These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
570 related articles for article (PubMed ID: 30242952)
1. Injectable hydrogels based on glycyrrhizin, alginate, and calcium for three-dimensional cell culture in liver tissue engineering. Tong XF; Zhao FQ; Ren YZ; Zhang Y; Cui YL; Wang QS J Biomed Mater Res A; 2018 Dec; 106(12):3292-3302. PubMed ID: 30242952 [TBL] [Abstract][Full Text] [Related]
2. Construction of Injectable Self-Healing Macroporous Hydrogels via a Template-Free Method for Tissue Engineering and Drug Delivery. Wang L; Deng F; Wang W; Li A; Lu C; Chen H; Wu G; Nan K; Li L ACS Appl Mater Interfaces; 2018 Oct; 10(43):36721-36732. PubMed ID: 30261143 [TBL] [Abstract][Full Text] [Related]
4. [In vitro study on injectable alginate-strontium hydrogel for bone tissue engineering]. Tu Y; Wu T; Ye A; Xu J; Guo F; Cheng X Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2013 Dec; 27(12):1499-505. PubMed ID: 24640374 [TBL] [Abstract][Full Text] [Related]
5. Development and characterization of novel agar and gelatin injectable hydrogel as filler for peripheral nerve guidance channels. Tonda-Turo C; Gnavi S; Ruini F; Gambarotta G; Gioffredi E; Chiono V; Perroteau I; Ciardelli G J Tissue Eng Regen Med; 2017 Jan; 11(1):197-208. PubMed ID: 24737714 [TBL] [Abstract][Full Text] [Related]
6. Injectable conductive collagen/alginate/polypyrrole hydrogels as a biocompatible system for biomedical applications. Ketabat F; Karkhaneh A; Mehdinavaz Aghdam R; Hossein Ahmadi Tafti S J Biomater Sci Polym Ed; 2017 Jun; 28(8):794-805. PubMed ID: 28278043 [TBL] [Abstract][Full Text] [Related]
7. The calcium silicate/alginate composite: preparation and evaluation of its behavior as bioactive injectable hydrogels. Han Y; Zeng Q; Li H; Chang J Acta Biomater; 2013 Nov; 9(11):9107-17. PubMed ID: 23796407 [TBL] [Abstract][Full Text] [Related]
8. Development of a novel alginate-polyvinyl alcohol-hydroxyapatite hydrogel for 3D bioprinting bone tissue engineered scaffolds. Bendtsen ST; Quinnell SP; Wei M J Biomed Mater Res A; 2017 May; 105(5):1457-1468. PubMed ID: 28187519 [TBL] [Abstract][Full Text] [Related]
9. Fabrication of polydopamine nanoparticles knotted alginate scaffolds and their properties. Shen J; Shi D; Dong L; Zhang Z; Li X; Chen M J Biomed Mater Res A; 2018 Dec; 106(12):3255-3266. PubMed ID: 30242961 [TBL] [Abstract][Full Text] [Related]
10. Self-crosslinking effect of chitosan and gelatin on alginate based hydrogels: Injectable in situ forming scaffolds. Naghizadeh Z; Karkhaneh A; Khojasteh A Mater Sci Eng C Mater Biol Appl; 2018 Aug; 89():256-264. PubMed ID: 29752097 [TBL] [Abstract][Full Text] [Related]
12. Alginate dependent changes of physical properties in 3D bioprinted cell-laden porous scaffolds affect cell viability and cell morphology. Zhang J; Wehrle E; Vetsch JR; Paul GR; Rubert M; Müller R Biomed Mater; 2019 Sep; 14(6):065009. PubMed ID: 31426033 [TBL] [Abstract][Full Text] [Related]
13. Injectable in situ self-cross-linking hydrogels based on poly(L-glutamic acid) and alginate for cartilage tissue engineering. Yan S; Wang T; Feng L; Zhu J; Zhang K; Chen X; Cui L; Yin J Biomacromolecules; 2014 Dec; 15(12):4495-508. PubMed ID: 25279766 [TBL] [Abstract][Full Text] [Related]
14. Injectable collagen/RGD systems for bone tissue engineering applications. Kung FC Biomed Mater Eng; 2018; 29(2):241-251. PubMed ID: 29457597 [TBL] [Abstract][Full Text] [Related]