These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
124 related articles for article (PubMed ID: 30242981)
41. Vocal tract area function for vowels using three-dimensional magnetic resonance imaging. A preliminary study. Clément P; Hans S; Hartl DM; Maeda S; Vaissière J; Brasnu D J Voice; 2007 Sep; 21(5):522-30. PubMed ID: 16581228 [TBL] [Abstract][Full Text] [Related]
42. Effect of the losses in the vocal tract on determination of the area function. Gülmezoğlu MB; Barkana A Biomed Mater Eng; 2003; 13(2):159-66. PubMed ID: 12775906 [TBL] [Abstract][Full Text] [Related]
43. The remarkable vocal anatomy of the koala (Phascolarctos cinereus): insights into low-frequency sound production in a marsupial species. Frey R; Reby D; Fritsch G; Charlton BD J Anat; 2018 Apr; 232(4):575-595. PubMed ID: 29460389 [TBL] [Abstract][Full Text] [Related]
44. Vocal Tract Morphology in Inhaling Singing: An MRI-Based Study. Moerman M; Vanhecke F; Van Assche L; Vercruysse J; Daemers K; Leman M J Voice; 2016 Jul; 30(4):466-71. PubMed ID: 26122925 [TBL] [Abstract][Full Text] [Related]
45. Spatio-temporal quantification of vocal fold vibrations using high-speed videoendoscopy and a biomechanical model. Schwarz R; Döllinger M; Wurzbacher T; Eysholdt U; Lohscheller J J Acoust Soc Am; 2008 May; 123(5):2717-32. PubMed ID: 18529190 [TBL] [Abstract][Full Text] [Related]
46. On Short-Time Estimation of Vocal Tract Length from Formant Frequencies. Lammert AC; Narayanan SS PLoS One; 2015; 10(7):e0132193. PubMed ID: 26177102 [TBL] [Abstract][Full Text] [Related]
47. Simulation and analysis of nasalized vowels based on magnetic resonance imaging data. Pruthi T; Espy-Wilson CY; Story BH J Acoust Soc Am; 2007 Jun; 121(6):3858-73. PubMed ID: 17552733 [TBL] [Abstract][Full Text] [Related]
48. Optimized transformation of the glottal motion into a mechanical model. Triep M; Brücker C; Stingl M; Döllinger M Med Eng Phys; 2011 Mar; 33(2):210-7. PubMed ID: 21115384 [TBL] [Abstract][Full Text] [Related]
49. Education in acoustics and speech science using vocal-tract models. Arai T J Acoust Soc Am; 2012 Mar; 131(3):2444-54. PubMed ID: 22423792 [TBL] [Abstract][Full Text] [Related]
50. The Human Vocal Fold Layers. Their Delineation Inside Vocal Fold as a Background to Create 3D Digital and Synthetic Glottal Model. Klepacek I; Jirak D; Duskova Smrckova M; Janouskova O; Vampola T J Voice; 2016 Sep; 30(5):529-37. PubMed ID: 26432357 [TBL] [Abstract][Full Text] [Related]
51. Role of vocal tract morphology in speech development: perceptual targets and sensorimotor maps for synthesized French vowels from birth to adulthood. Ménard L; Schwartz JL; Boë LJ J Speech Lang Hear Res; 2004 Oct; 47(5):1059-80. PubMed ID: 15603462 [TBL] [Abstract][Full Text] [Related]
52. Influence of acoustic loading on an effective single mass model of the vocal folds. Zañartu M; Mongeau L; Wodicka GR J Acoust Soc Am; 2007 Feb; 121(2):1119-29. PubMed ID: 17348533 [TBL] [Abstract][Full Text] [Related]
53. Finite element computation of elliptical vocal tract impedances using the two-microphone transfer function method. Arnela M; Guasch O J Acoust Soc Am; 2013 Jun; 133(6):4197-209. PubMed ID: 23742371 [TBL] [Abstract][Full Text] [Related]
54. In situ vocal fold properties and pitch prediction by dynamic actuation of the songbird syrinx. Düring DN; Knörlein BJ; Elemans CPH Sci Rep; 2017 Sep; 7(1):11296. PubMed ID: 28900151 [TBL] [Abstract][Full Text] [Related]
55. Vocal tract area function estimation from midsagittal dimensions with CT scans and a vocal tract cast: modeling the transition with two sets of coefficients. Perrier P; Boë LJ; Sock R J Speech Hear Res; 1992 Feb; 35(1):53-67. PubMed ID: 1735977 [TBL] [Abstract][Full Text] [Related]
56. Mechanical characterization of vocal fold tissue: a review study. Miri AK J Voice; 2014 Nov; 28(6):657-67. PubMed ID: 25008382 [TBL] [Abstract][Full Text] [Related]
57. Sonographic anatomy of the larynx, with particular reference to the vocal cords. Raghavendra BN; Horii SC; Reede DL; Rumancik WM; Persky M; Bergeron T J Ultrasound Med; 1987 May; 6(5):225-30. PubMed ID: 3295291 [TBL] [Abstract][Full Text] [Related]
58. Computational study of false vocal folds effects on unsteady airflows through static models of the human larynx. Farbos de Luzan C; Chen J; Mihaescu M; Khosla SM; Gutmark E J Biomech; 2015 May; 48(7):1248-57. PubMed ID: 25835787 [TBL] [Abstract][Full Text] [Related]
59. Vowel formants from the wave equation. Hannukainen A; Lukkari T; Malinen J; Palo P J Acoust Soc Am; 2007 Jul; 122(1):EL1-7. PubMed ID: 17614371 [TBL] [Abstract][Full Text] [Related]
60. Analytic representation of volume flow as a function of geometry and pressure in a static physical model of the glottis. Fulcher LP; Scherer RC; Zhai G; Zhu Z J Voice; 2006 Dec; 20(4):489-512. PubMed ID: 16434169 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]