These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 30243217)

  • 1. Interference of engineered nanomaterials in flow cytometry: A case study.
    Bohmer N; Rippl A; May S; Walter A; Heo MB; Kwak M; Roesslein M; Song NW; Wick P; Hirsch C
    Colloids Surf B Biointerfaces; 2018 Dec; 172():635-645. PubMed ID: 30243217
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Exploring Flow Cytometry-Based Micronucleus Scoring for Reliable Nanomaterial Genotoxicity Assessment.
    Franz P; Bürkle A; Wick P; Hirsch C
    Chem Res Toxicol; 2020 Oct; 33(10):2538-2549. PubMed ID: 32945164
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Gold nanoparticles enhance fluorescence signals by flow cytometry at low antibody concentrations.
    Reis DS; de Oliveira VL; Silva ML; Paniago RM; Ladeira LO; Andrade LM
    J Mater Chem B; 2021 Feb; 9(5):1414-1423. PubMed ID: 33464273
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhanced flow cytometry-based bead immunoassays using metal nanostructures.
    Deng W; Drozdowicz-Tomsia K; Jin D; Goldys EM
    Anal Chem; 2009 Sep; 81(17):7248-55. PubMed ID: 19715357
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Specific targeting, cell sorting, and bioimaging with smart magnetic silica core-shell nanomaterials.
    Yoon TJ; Yu KN; Kim E; Kim JS; Kim BG; Yun SH; Sohn BH; Cho MH; Lee JK; Park SB
    Small; 2006 Feb; 2(2):209-15. PubMed ID: 17193022
    [No Abstract]   [Full Text] [Related]  

  • 6. Environmental and health effects of nanomaterials in nanotextiles and façade coatings.
    Som C; Wick P; Krug H; Nowack B
    Environ Int; 2011 Aug; 37(6):1131-42. PubMed ID: 21397331
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Simultaneous counting of two subsets of leukocytes using fluorescent silica nanoparticles in a sheathless microchip flow cytometer.
    Yun H; Bang H; Min J; Chung C; Chang JK; Han DC
    Lab Chip; 2010 Dec; 10(23):3243-54. PubMed ID: 20941407
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Efficient prevention of nanomaterials transport in the porous media by treatment with polyelectrolytes.
    Soenaryo T; Murata S; Zinchenko A
    Chemosphere; 2018 Nov; 210():567-576. PubMed ID: 30029149
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The concept of bio-corona in modulating the toxicity of engineered nanomaterials (ENM).
    Westmeier D; Stauber RH; Docter D
    Toxicol Appl Pharmacol; 2016 May; 299():53-7. PubMed ID: 26592323
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Toxicity of Carbon Nanomaterials-Towards Reliable Viability Assessment via New Approach in Flow Cytometry.
    Malina T; Poláková K; Hirsch C; Svoboda L; Zbořil R
    Int J Mol Sci; 2021 Jul; 22(14):. PubMed ID: 34299367
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fabrication of fluorescent silica-Au hybrid nanostructures for targeted imaging of tumor cells.
    Cao F; Deng R; Liu D; Song S; Wang S; Su S; Zhang H
    Dalton Trans; 2011 May; 40(18):4800-2. PubMed ID: 21455503
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The applicability of conventional cytotoxicity assays to predict safety/toxicity of mesoporous silica nanoparticles, silver and gold nanoparticles and multi-walled carbon nanotubes.
    Mannerström M; Zou J; Toimela T; Pyykkö I; Heinonen T
    Toxicol In Vitro; 2016 Dec; 37():113-120. PubMed ID: 27633900
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In flow metal-enhanced fluorescence for biolabelling and biodetection.
    Gontero D; Veglia AV; Bracamonte AG
    Photochem Photobiol Sci; 2020 Sep; 19(9):1168-1188. PubMed ID: 32677642
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synthesis and characterization of model silica-gold core-shell nanohybrid systems to demonstrate plasmonic enhancement of fluorescence.
    Roy S; Dixit CK; Woolley R; O'Kennedy R; McDonagh C
    Nanotechnology; 2012 Aug; 23(32):325603. PubMed ID: 22825430
    [TBL] [Abstract][Full Text] [Related]  

  • 15. X-ray absorption of gold nanoparticles with thin silica shell.
    Park YS; Liz-Marzán LM; Kasuya A; Kobayashi Y; Nagao D; Konno M; Mamykin S; Dmytruk A; Takeda M; Ohuchi N
    J Nanosci Nanotechnol; 2006 Nov; 6(11):3503-6. PubMed ID: 17252799
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Approaches to the safety assessment of engineered nanomaterials (ENM) in food.
    Cockburn A; Bradford R; Buck N; Constable A; Edwards G; Haber B; Hepburn P; Howlett J; Kampers F; Klein C; Radomski M; Stamm H; Wijnhoven S; Wildemann T
    Food Chem Toxicol; 2012 Jun; 50(6):2224-42. PubMed ID: 22245376
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Self-assembly of ultrabright fluorescent silica particles.
    Sokolov I; Kievsky YY; Kaszpurenko JM
    Small; 2007 Mar; 3(3):419-23. PubMed ID: 17245779
    [No Abstract]   [Full Text] [Related]  

  • 18. Comparative study between the photodynamic ability of gold and silver nanoparticles in mediating cell death in breast and lung cancer cell lines.
    El-Hussein A; Mfouo-Tynga I; Abdel-Harith M; Abrahamse H
    J Photochem Photobiol B; 2015 Dec; 153():67-75. PubMed ID: 26398813
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A selective chemical sensor based on the plasmonic response of phosphinine-stabilized gold nanoparticles hosted on periodically organized mesoporous silica thin layers.
    Goettmann F; Moores A; Boissière C; Le Floch P; Sanchez C
    Small; 2005 Jun; 1(6):636-9. PubMed ID: 17193499
    [No Abstract]   [Full Text] [Related]  

  • 20. A fluorescent nanosensor for apoptotic cells.
    Quinti L; Weissleder R; Tung CH
    Nano Lett; 2006 Mar; 6(3):488-90. PubMed ID: 16522048
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.