These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 30243241)

  • 1. Thermochemical conversion of cobalt-loaded spent coffee grounds for production of energy resource and environmental catalyst.
    Cho DW; Tsang DCW; Kim S; Kwon EE; Kwon G; Song H
    Bioresour Technol; 2018 Dec; 270():346-351. PubMed ID: 30243241
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reduction of Bromate by Cobalt-Impregnated Biochar Fabricated via Pyrolysis of Lignin Using CO
    Cho DW; Kwon G; Ok YS; Kwon EE; Song H
    ACS Appl Mater Interfaces; 2017 Apr; 9(15):13142-13150. PubMed ID: 28362484
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Investigation into role of CO
    Kim Y; Lee J; Yi H; Fai Tsang Y; Kwon EE
    Bioresour Technol; 2019 Jan; 272():48-53. PubMed ID: 30308407
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cobalt-impregnated biochar produced from CO
    Yang MT; Du Y; Tong WC; Yip ACK; Lin KA
    Chemosphere; 2019 Jul; 226():924-933. PubMed ID: 31509922
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Adsorption of potentially harmful elements by metal-biochar prepared via Co-pyrolysis of coffee grounds and Nano Fe(III) oxides.
    Cho DW; Chon CM; Yim GJ; Ryu J; Jo H; Kim SJ; Jang JY; Song H
    Chemosphere; 2023 Apr; 319():136536. PubMed ID: 36167204
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synthesis of cobalt-impregnated carbon composite derived from a renewable resource: Characterization and catalytic performance evaluation.
    Cho DW; Jeong KH; Kim S; Tsang DCW; Ok YS; Song H
    Sci Total Environ; 2018 Jan; 612():103-110. PubMed ID: 28846901
    [TBL] [Abstract][Full Text] [Related]  

  • 7. CO
    Yang MT; Tong WC; Lee J; Kwon E; Lin KA
    J Colloid Interface Sci; 2019 Jun; 545():16-24. PubMed ID: 30861478
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Energy recovery and waste treatment using the co-pyrolysis of biomass waste and polymer.
    Oh SY; Sohn JI
    Waste Manag Res; 2022 Nov; 40(11):1637-1644. PubMed ID: 35642625
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparative study on carbon dioxide-cofed catalytic pyrolysis of grass and woody biomass.
    Kim JH; Jung S; Lin KA; Rinklebe J; Kwon EE
    Bioresour Technol; 2021 Mar; 323():124633. PubMed ID: 33412496
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Carbon dioxide assisted sustainability enhancement of pyrolysis of waste biomass: A case study with spent coffee ground.
    Cho DW; Cho SH; Song H; Kwon EE
    Bioresour Technol; 2015; 189():1-6. PubMed ID: 25864025
    [TBL] [Abstract][Full Text] [Related]  

  • 11. CO
    Kim JH; Jung S; Park YK; Kwon EE
    J Hazard Mater; 2020 Sep; 396():122637. PubMed ID: 32304851
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Thermal behavior and kinetic study for co-pyrolysis of lignocellulosic biomass with polyethylene over Cobalt modified ZSM-5 catalyst by thermogravimetric analysis.
    Xiang Z; Liang J; Morgan HM; Liu Y; Mao H; Bu Q
    Bioresour Technol; 2018 Jan; 247():804-811. PubMed ID: 30060416
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lignin valorization for the production of renewable chemicals: State-of-the-art review and future prospects.
    Cao L; Yu IKM; Liu Y; Ruan X; Tsang DCW; Hunt AJ; Ok YS; Song H; Zhang S
    Bioresour Technol; 2018 Dec; 269():465-475. PubMed ID: 30146182
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synthesis of nickel/biochar composite from pyrolysis of Microcystis aeruginosa and its practical use for syngas production.
    Lee T; Nam IH; Jung S; Park YK; Kwon EE
    Bioresour Technol; 2020 Mar; 300():122712. PubMed ID: 31911316
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Insight into the Ex Situ Catalytic Pyrolysis of Biomass over Char Supported Metals Catalyst: Syngas Production and Tar Decomposition.
    Hu M; Cui B; Xiao B; Luo S; Guo D
    Nanomaterials (Basel); 2020 Jul; 10(7):. PubMed ID: 32708401
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A strategy of using recycled char as a co-catalyst in cyclic in-situ catalytic cattle manure pyrolysis for increasing gas production.
    Zhou Y; Chen Z; Gong H; Wang X; Yu H
    Waste Manag; 2020 Apr; 107():74-81. PubMed ID: 32278218
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Valorization of synthetic textile waste using CO
    Kwon D; Yi S; Jung S; Kwon EE
    Environ Pollut; 2021 Jan; 268(Pt A):115916. PubMed ID: 33126030
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A thermochemical-biochemical hybrid processing of lignocellulosic biomass for producing fuels and chemicals.
    Shen Y; Jarboe L; Brown R; Wen Z
    Biotechnol Adv; 2015 Dec; 33(8):1799-813. PubMed ID: 26492814
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Balancing the Components of Biomass and the Reactivity of Pyrolysis Gas: Biomass-Assisted Recycling of Spent LiCoO
    Zhou F; Wang H; Wang S; Zhao J; Qu X; Wang D; Cai Y; Zheng Z; Wang D; Yin H
    Environ Sci Technol; 2024 Jan; 58(4):2102-2111. PubMed ID: 38238255
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Linking pyrolysis and anaerobic digestion (Py-AD) for the conversion of lignocellulosic biomass.
    Fabbri D; Torri C
    Curr Opin Biotechnol; 2016 Apr; 38():167-73. PubMed ID: 26948108
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.