These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
250 related articles for article (PubMed ID: 30243245)
1. Hydrolysis of cellulose using cellulase physically immobilized on highly stable zirconium based metal-organic frameworks. Ahmed IN; Yang XL; Dubale AA; Li RF; Ma YM; Wang LM; Hou GH; Guan RF; Xie MH Bioresour Technol; 2018 Dec; 270():377-382. PubMed ID: 30243245 [TBL] [Abstract][Full Text] [Related]
2. Immobilization of cellulase on a core-shell structured metal-organic framework composites: Better inhibitors tolerance and easier recycling. Qi B; Luo J; Wan Y Bioresour Technol; 2018 Nov; 268():577-582. PubMed ID: 30130719 [TBL] [Abstract][Full Text] [Related]
3. Immobilization of cellulase on monolith supported with Zr(IV)-based metal-organic framework as chiral stationary phase for enantioseparation of five basic drugs in capillary electrochromatography. Ma M; Zhang J; Li P; Du Y; Gan J; Yang J; Zhang L Mikrochim Acta; 2021 May; 188(6):186. PubMed ID: 33978843 [TBL] [Abstract][Full Text] [Related]
4. Enhancing cellulose hydrolysis via cellulase immobilization on zeolitic imidazolate frameworks using physical adsorption. Sun L; Xu C; Tong S; Gu X Bioprocess Biosyst Eng; 2024 Jul; 47(7):1071-1080. PubMed ID: 38811469 [TBL] [Abstract][Full Text] [Related]
5. Metal-organic framework promoting high-solids enzymatic hydrolysis of untreated corncob residues. Zheng T; Yang L; Ding M; Huang C; Yao J Bioresour Technol; 2022 Jan; 344(Pt A):126163. PubMed ID: 34688859 [TBL] [Abstract][Full Text] [Related]
6. Fabrication of Thermo-Responsive Polymer-MOF@cellulase Composites with Improved Catalytic Performance for Hydrolysis of Cellulose. Ali Tajwar M; Liu Y; Qi L Chem Asian J; 2024 Oct; ():e202400990. PubMed ID: 39375850 [TBL] [Abstract][Full Text] [Related]
7. Zr-Metal Organic Framework and Derivatives for Adsorptive and Photocatalytic Removal of Acid Dyes. Lin KA; Yang H; Hsu FK Water Environ Res; 2018 Feb; 90(2):144-154. PubMed ID: 29348001 [TBL] [Abstract][Full Text] [Related]
8. Immobilization of cellulase enzymes on nano and micro-materials for breakdown of cellulose for biofuel production-a narrative review. Rajnish KN; Samuel MS; John J A; Datta S; Chandrasekar N; Balaji R; Jose S; Selvarajan E Int J Biol Macromol; 2021 Jul; 182():1793-1802. PubMed ID: 34058212 [TBL] [Abstract][Full Text] [Related]
9. Catalytic hydrolysis of cellulose by phosphotungstic acid-supported functionalized metal-organic frameworks with different electronegative groups. Han J; Wang Y; Wan J; Ma Y Environ Sci Pollut Res Int; 2019 May; 26(15):15345-15353. PubMed ID: 30929176 [TBL] [Abstract][Full Text] [Related]
10. Fabrication of metal-organic frameworks@cellulose aerogels composite materials for removal of heavy metal ions in water. Lei C; Gao J; Ren W; Xie Y; Abdalkarim SYH; Wang S; Ni Q; Yao J Carbohydr Polym; 2019 Feb; 205():35-41. PubMed ID: 30446114 [TBL] [Abstract][Full Text] [Related]
11. Cellulase immobilized by sol-gel entrapment for efficient hydrolysis of cellulose. Ungurean M; Paul C; Peter F Bioprocess Biosyst Eng; 2013 Oct; 36(10):1327-38. PubMed ID: 23065015 [TBL] [Abstract][Full Text] [Related]
12. Characterization and immobilization of liposome-bound cellulase for hydrolysis of insoluble cellulose. Li C; Yoshimoto M; Fukunaga K; Nakao K Bioresour Technol; 2007 May; 98(7):1366-72. PubMed ID: 16822673 [TBL] [Abstract][Full Text] [Related]
13. Effect of cellulose physical characteristics, especially the water sorption value, on the efficiency of its hydrolysis catalyzed by free or immobilized cellulase. Ogeda TL; Silva IB; Fidale LC; El Seoud OA; Petri DF J Biotechnol; 2012 Jan; 157(1):246-52. PubMed ID: 22146618 [TBL] [Abstract][Full Text] [Related]
14. Poly(acrylic acid) nanogel as a substrate for cellulase immobilization for hydrolysis of cellulose. Ahmed IN; Chang R; Tsai WB Colloids Surf B Biointerfaces; 2017 Apr; 152():339-343. PubMed ID: 28131958 [TBL] [Abstract][Full Text] [Related]
15. Presence versus Proximity: The Role of Pendant Amines in the Catalytic Hydrolysis of a Nerve Agent Simulant. Islamoglu T; Ortuño MA; Proussaloglou E; Howarth AJ; Vermeulen NA; Atilgan A; Asiri AM; Cramer CJ; Farha OK Angew Chem Int Ed Engl; 2018 Feb; 57(7):1949-1953. PubMed ID: 29314562 [TBL] [Abstract][Full Text] [Related]
16. Effect of bovine serum albumin (BSA) on enzymatic cellulose hydrolysis. Wang H; Mochidzuki K; Kobayashi S; Hiraide H; Wang X; Cui Z Appl Biochem Biotechnol; 2013 Jun; 170(3):541-51. PubMed ID: 23553108 [TBL] [Abstract][Full Text] [Related]
17. Selective Adsorption-Based Separation of Flue Gas and Natural Gas in Zirconium Metal-Organic Frameworks Nanocrystals. Li P; Shen Y; Wang D; Chen Y; Zhao Y Molecules; 2019 May; 24(9):. PubMed ID: 31083563 [TBL] [Abstract][Full Text] [Related]
18. Thiol-Amino Bifunctional Metal-Organic-Framework-Based Membrane Regulating Hydrophobic Sites for Selective Separation of Artesunate. Zhang C; Hu B; Ren J; Du W; Meng M Inorg Chem; 2024 Aug; 63(31):14699-14711. PubMed ID: 39047187 [TBL] [Abstract][Full Text] [Related]
19. Highly Defective Zirconium-Based Metal-Organic Frameworks for the Efficient Adsorption and Detection of Sugar Phosphates in the Biological Sample. Feng W; Hu Y; Wang M; Liu LY ACS Appl Mater Interfaces; 2024 Jul; 16(29):37641-37655. PubMed ID: 38991175 [TBL] [Abstract][Full Text] [Related]
20. Folic Acid Functionalized Zirconium-Based Metal-Organic Frameworks as Drug Carriers for Active Tumor-Targeted Drug Delivery. Dong H; Yang GX; Zhang X; Meng XB; Sheng JL; Sun XJ; Feng YJ; Zhang FM Chemistry; 2018 Nov; 24(64):17148-17154. PubMed ID: 30125400 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]