These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

95 related articles for article (PubMed ID: 30243286)

  • 1. Thermoelectric efficiency in three-terminal graphene nano-junctions.
    Sartipi Z; Hayati A; Vahedi J
    J Chem Phys; 2018 Sep; 149(11):114103. PubMed ID: 30243286
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhancing thermoelectric properties through a three-terminal benzene molecule.
    Sartipi Z; Vahedi J
    J Chem Phys; 2018 May; 148(17):174302. PubMed ID: 29739204
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhanced thermoelectric properties in anthracene molecular device with graphene electrodes: the role of phononic thermal conductance.
    Ramezani Akbarabadi S; Rahimpour Soleimani H; Golsanamlou Z; Bagheri Tagani M
    Sci Rep; 2020 Jul; 10(1):10922. PubMed ID: 32616835
    [TBL] [Abstract][Full Text] [Related]  

  • 4. On the thermoelectric transport properties of graphyne by the first-principles method.
    Wang XM; Mo DC; Lu SS
    J Chem Phys; 2013 May; 138(20):204704. PubMed ID: 23742497
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thermoelectric power generation efficiency of zigzag monolayer nanoribbon of bismuth.
    Karbaschi H; Nouri N; Rezaei M; Rashedi G
    Nanotechnology; 2020 Sep; 31(37):375403. PubMed ID: 32428877
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electronic transport in three-terminal triangular carbon nanopatches.
    Costa AL; Meunier V; GirĂ£o EC
    Nanotechnology; 2014 Jan; 25(4):045706. PubMed ID: 24394719
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thermoelectric properties of graphene nanoribbons, junctions and superlattices.
    Chen Y; Jayasekera T; Calzolari A; Kim KW; Nardelli MB
    J Phys Condens Matter; 2010 Sep; 22(37):372202. PubMed ID: 21403189
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thermoelectric properties of fullerene-based junctions: a first-principles study.
    Wang RN; Dong GY; Wang SF; Fu GS; Wang JL
    Phys Chem Chem Phys; 2016 Oct; 18(40):28117-28124. PubMed ID: 27711504
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thermodynamic bounds and general properties of optimal efficiency and power in linear responses.
    Jiang JH
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Oct; 90(4):042126. PubMed ID: 25375457
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhanced thermoelectric properties of graphene oxide patterned by nanoroads.
    Zhou S; Guo Y; Zhao J
    Phys Chem Chem Phys; 2016 Apr; 18(15):10607-15. PubMed ID: 27035740
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thermal transport and thermoelectric properties of beta-graphyne nanostructures.
    Ouyang T; Hu M
    Nanotechnology; 2014 Jun; 25(24):245401. PubMed ID: 24859889
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Thermoelectric efficiency of molecular junctions.
    Perroni CA; Ninno D; Cataudella V
    J Phys Condens Matter; 2016 Sep; 28(37):373001. PubMed ID: 27420149
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Exchange and electric fields enhanced spin thermoelectric performance of germanene nano-ribbon.
    Zheng J; Chi F; Guo Y
    J Phys Condens Matter; 2015 Jul; 27(29):295302. PubMed ID: 26139695
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Side-group-mediated thermoelectric properties of anthracene single-molecule junction with anchoring groups.
    Ramezani Akbarabadi S; Rahimpour Soleimani H; Bagheri Tagani M
    Sci Rep; 2021 Apr; 11(1):8958. PubMed ID: 33903663
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tuning thermoelectric properties of graphene/boron nitride heterostructures.
    Algharagholy LA; Al-Galiby Q; Marhoon HA; Sadeghi H; Abduljalil HM; Lambert CJ
    Nanotechnology; 2015 Nov; 26(47):475401. PubMed ID: 26528629
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High Performance Graphene Nano-ribbon Thermoelectric Devices by Incorporation and Dimensional Tuning of Nanopores.
    Hossain MS; Al-Dirini F; Hossain FM; Skafidas E
    Sci Rep; 2015 Jun; 5():11297. PubMed ID: 26083450
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhancement of the thermoelectric figure of merit in DNA-like systems induced by Fano and Dicke effects.
    Fu HH; Gu L; Wu DD; Zhang ZQ
    Phys Chem Chem Phys; 2015 Apr; 17(16):11077-87. PubMed ID: 25826287
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spin-dependent thermoelectric effects in graphene-based spin valves.
    Zeng M; Huang W; Liang G
    Nanoscale; 2013 Jan; 5(1):200-8. PubMed ID: 23151965
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The role of Coulomb interaction in thermoelectric effects of an Aharonov-Bohm interferometer.
    Liu YS; Zhang DB; Yang XF; Feng JF
    Nanotechnology; 2011 Jun; 22(22):225201. PubMed ID: 21454941
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Thermoelectric transport properties in atomic scale conductors.
    Zheng X; Zheng W; Wei Y; Zeng Z; Wang J
    J Chem Phys; 2004 Nov; 121(17):8537-41. PubMed ID: 15511178
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.