These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 30243288)

  • 21. Linear and non-linear dynamics of entangled linear polymer melts by modified tunable coarse-grained level dissipative particle dynamics.
    Yamanoi M; Pozo O; Maia JM
    J Chem Phys; 2011 Jul; 135(4):044904. PubMed ID: 21806158
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Determination of linear viscoelastic properties of an entangled polymer melt by probe rheology simulations.
    Karim M; Indei T; Schieber JD; Khare R
    Phys Rev E; 2016 Jan; 93(1):012501. PubMed ID: 26871112
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A practical method to avoid bond crossing in two-dimensional dissipative particle dynamics simulations.
    Liu H; Xue YH; Qian HJ; Lu ZY; Sun CC
    J Chem Phys; 2008 Jul; 129(2):024902. PubMed ID: 18624558
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Theoretical analyses on water cluster structures in polymer electrolyte membrane by using dissipative particle dynamics simulations with fragment molecular orbital based effective parameters.
    Okuwaki K; Mochizuki Y; Doi H; Kawada S; Ozawa T; Yasuoka K
    RSC Adv; 2018 Oct; 8(60):34582-34595. PubMed ID: 35548624
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Mesoscale simulation of polymer reaction equilibrium: combining dissipative particle dynamics with reaction ensemble Monte Carlo. I. Polydispersed polymer systems.
    Lísal M; Brennan JK; Smith WR
    J Chem Phys; 2006 Oct; 125(16):164905. PubMed ID: 17092137
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effective control of the transport coefficients of a coarse-grained liquid and polymer models using the dissipative particle dynamics and Lowe-Andersen equations of motion.
    Qian HJ; Liew CC; Müller-Plathe F
    Phys Chem Chem Phys; 2009 Mar; 11(12):1962-9. PubMed ID: 19280007
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Dissipative particle dynamics simulations of polymer melts. I. Building potential of mean force for polyethylene and cis-polybutadiene.
    Guerrault X; Rousseau B; Farago J
    J Chem Phys; 2004 Oct; 121(13):6538-46. PubMed ID: 15446955
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Simulation of dilute solutions of linear and star-branched polymers by dissipative particle dynamics.
    Nardai MM; Zifferer G
    J Chem Phys; 2009 Sep; 131(12):124903. PubMed ID: 19791917
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Flow-induced translocation of polymers through a fluidic channel: a dissipative particle dynamics simulation study.
    Guo J; Li X; Liu Y; Liang H
    J Chem Phys; 2011 Apr; 134(13):134906. PubMed ID: 21476773
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Static and dynamic properties of the interface between a polymer brush and a melt of identical chains.
    Pastorino C; Binder K; Kreer T; Müller M
    J Chem Phys; 2006 Feb; 124(6):64902. PubMed ID: 16483239
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Comparison of equilibrium techniques for the viscosity calculation from DPD simulations.
    Panoukidou M; Wand CR; Carbone P
    Soft Matter; 2021 Sep; 17(36):8343-8353. PubMed ID: 34550156
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Dissipative particle dynamics simulations in colloid and Interface science: a review.
    Santo KP; Neimark AV
    Adv Colloid Interface Sci; 2021 Dec; 298():102545. PubMed ID: 34757286
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Reptational dynamics in dissipative particle dynamics simulations of polymer melts.
    Nikunen P; Vattulainen I; Karttunen M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Mar; 75(3 Pt 2):036713. PubMed ID: 17500832
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Self-diffusion coefficient in smoothed dissipative particle dynamics.
    Litvinov S; Ellero M; Hu X; Adams NA
    J Chem Phys; 2009 Jan; 130(2):021101. PubMed ID: 19154012
    [TBL] [Abstract][Full Text] [Related]  

  • 35. New parametrization method for dissipative particle dynamics.
    Travis KP; Bankhead M; Good K; Owens SL
    J Chem Phys; 2007 Jul; 127(1):014109. PubMed ID: 17627339
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A test of systematic coarse-graining of molecular dynamics simulations: Transport properties.
    Fu CC; Kulkarni PM; Shell MS; Leal LG
    J Chem Phys; 2013 Sep; 139(9):094107. PubMed ID: 24028102
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Describing the component dynamics in miscible polymer blends: towards a fully predictive model.
    Schwartz GA; Cangialosi D; Alegría A; Colmenero J
    J Chem Phys; 2006 Apr; 124(15):154904. PubMed ID: 16674262
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Hydrodynamic interactions for single dissipative-particle-dynamics particles and their clusters and filaments.
    Pan W; Fedosov DA; Karniadakis GE; Caswell B
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Oct; 78(4 Pt 2):046706. PubMed ID: 18999560
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Bottom-up derivation of conservative and dissipative interactions for coarse-grained molecular liquids with the conditional reversible work method.
    Deichmann G; Marcon V; van der Vegt NF
    J Chem Phys; 2014 Dec; 141(22):224109. PubMed ID: 25494734
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Adsorption and disjoining pressure isotherms of confined polymers using dissipative particle dynamics.
    Goicochea AG
    Langmuir; 2007 Nov; 23(23):11656-63. PubMed ID: 17914849
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.