These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 30243435)

  • 1. Slippery When Wet: Airway Surface Liquid Homeostasis and Mucus Hydration.
    Webster MJ; Tarran R
    Curr Top Membr; 2018; 81():293-335. PubMed ID: 30243435
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Soluble mediators, not cilia, determine airway surface liquid volume in normal and cystic fibrosis superficial airway epithelia.
    Tarran R; Trout L; Donaldson SH; Boucher RC
    J Gen Physiol; 2006 May; 127(5):591-604. PubMed ID: 16636206
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mathematical model reveals role of nucleotide signaling in airway surface liquid homeostasis and its dysregulation in cystic fibrosis.
    Sandefur CI; Boucher RC; Elston TC
    Proc Natl Acad Sci U S A; 2017 Aug; 114(35):E7272-E7281. PubMed ID: 28808008
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Airway surface liquid homeostasis in cystic fibrosis: pathophysiology and therapeutic targets.
    Haq IJ; Gray MA; Garnett JP; Ward C; Brodlie M
    Thorax; 2016 Mar; 71(3):284-7. PubMed ID: 26719229
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Differential effects of cyclic and constant stress on ATP release and mucociliary transport by human airway epithelia.
    Button B; Picher M; Boucher RC
    J Physiol; 2007 Apr; 580(Pt. 2):577-92. PubMed ID: 17317749
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Small Molecule Anion Carriers Correct Abnormal Airway Surface Liquid Properties in Cystic Fibrosis Airway Epithelia.
    Gianotti A; Capurro V; Delpiano L; Mielczarek M; García-Valverde M; Carreira-Barral I; Ludovico A; Fiore M; Baroni D; Moran O; Quesada R; Caci E
    Int J Mol Sci; 2020 Feb; 21(4):. PubMed ID: 32098269
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular basis for pH-dependent mucosal dehydration in cystic fibrosis airways.
    Garland AL; Walton WG; Coakley RD; Tan CD; Gilmore RC; Hobbs CA; Tripathy A; Clunes LA; Bencharit S; Stutts MJ; Betts L; Redinbo MR; Tarran R
    Proc Natl Acad Sci U S A; 2013 Oct; 110(40):15973-8. PubMed ID: 24043776
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Regulation of airway surface liquid volume and mucus transport by active ion transport.
    Tarran R
    Proc Am Thorac Soc; 2004; 1(1):42-6. PubMed ID: 16113411
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Purinergic receptors in airway hydration.
    Lazarowski ER; Boucher RC
    Biochem Pharmacol; 2021 May; 187():114387. PubMed ID: 33358825
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An integrated mathematical epithelial cell model for airway surface liquid regulation by mechanical forces.
    Wu D; Boucher RC; Button B; Elston T; Lin CL
    J Theor Biol; 2018 Feb; 438():34-45. PubMed ID: 29154907
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Resveratrol ameliorates abnormalities of fluid and electrolyte secretion in a hypoxia-Induced model of acquired CFTR deficiency.
    Woodworth BA
    Laryngoscope; 2015 Oct; 125 Suppl 7(0 7):S1-S13. PubMed ID: 25946147
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The relative roles of passive surface forces and active ion transport in the modulation of airway surface liquid volume and composition.
    Tarran R; Grubb BR; Gatzy JT; Davis CW; Boucher RC
    J Gen Physiol; 2001 Aug; 118(2):223-36. PubMed ID: 11479349
    [TBL] [Abstract][Full Text] [Related]  

  • 13. SPLUNC1 regulates airway surface liquid volume by protecting ENaC from proteolytic cleavage.
    Garcia-Caballero A; Rasmussen JE; Gaillard E; Watson MJ; Olsen JC; Donaldson SH; Stutts MJ; Tarran R
    Proc Natl Acad Sci U S A; 2009 Jul; 106(27):11412-7. PubMed ID: 19541605
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of cilia, mucus, and airway surface liquid in mucociliary dysfunction: lessons from mouse models.
    Mall MA
    J Aerosol Med Pulm Drug Deliv; 2008 Mar; 21(1):13-24. PubMed ID: 18518828
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Epithelial mucus-hypersecretion and respiratory disease.
    Danahay H; Jackson AD
    Curr Drug Targets Inflamm Allergy; 2005 Dec; 4(6):651-64. PubMed ID: 17305521
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanosensitive ATP release maintains proper mucus hydration of airways.
    Button B; Okada SF; Frederick CB; Thelin WR; Boucher RC
    Sci Signal; 2013 Jun; 6(279):ra46. PubMed ID: 23757023
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Linking increased airway hydration, ciliary beating, and mucociliary clearance through ENaC inhibition.
    Åstrand AB; Hemmerling M; Root J; Wingren C; Pesic J; Johansson E; Garland AL; Ghosh A; Tarran R
    Am J Physiol Lung Cell Mol Physiol; 2015 Jan; 308(1):L22-32. PubMed ID: 25361567
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Regulation of normal and cystic fibrosis airway surface liquid volume by phasic shear stress.
    Tarran R; Button B; Boucher RC
    Annu Rev Physiol; 2006; 68():543-61. PubMed ID: 16460283
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inhibition of Protease-Epithelial Sodium Channel Signaling Improves Mucociliary Function in Cystic Fibrosis Airways.
    Reihill JA; Walker B; Hamilton RA; Ferguson TE; Elborn JS; Stutts MJ; Harvey BJ; Saint-Criq V; Hendrick SM; Martin SL
    Am J Respir Crit Care Med; 2016 Sep; 194(6):701-10. PubMed ID: 27014936
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Acidic pH increases airway surface liquid viscosity in cystic fibrosis.
    Tang XX; Ostedgaard LS; Hoegger MJ; Moninger TO; Karp PH; McMenimen JD; Choudhury B; Varki A; Stoltz DA; Welsh MJ
    J Clin Invest; 2016 Mar; 126(3):879-91. PubMed ID: 26808501
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.