These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
580 related articles for article (PubMed ID: 30243554)
1. Reverse vaccinology and subtractive genomics-based putative vaccine targets identification for Burkholderia pseudomallei Bp1651. Hizbullah ; Nazir Z; Afridi SG; Shah M; Shams S; Khan A Microb Pathog; 2018 Dec; 125():219-229. PubMed ID: 30243554 [TBL] [Abstract][Full Text] [Related]
2. Identification of CD4+ T-cell epitope and investigation of HLA distribution for the immunogenic proteins of Burkholderia pseudomallei using in silico approaches - A key vaccine development strategy for melioidosis. Swetha RG; Sandhya M; Ramaiah S; Anbarasu A J Theor Biol; 2016 Jul; 400():11-8. PubMed ID: 27086038 [TBL] [Abstract][Full Text] [Related]
3. CD4+ T cell epitopes of FliC conserved between strains of Burkholderia: implications for vaccines against melioidosis and cepacia complex in cystic fibrosis. Musson JA; Reynolds CJ; Rinchai D; Nithichanon A; Khaenam P; Favry E; Spink N; Chu KK; De Soyza A; Bancroft GJ; Lertmemongkolchai G; Maillere B; Boyton RJ; Altmann DM; Robinson JH J Immunol; 2014 Dec; 193(12):6041-9. PubMed ID: 25392525 [TBL] [Abstract][Full Text] [Related]
4. Use of Reverse Vaccinology in the Design and Construction of Nanoglycoconjugate Vaccines against Burkholderia pseudomallei. Muruato LA; Tapia D; Hatcher CL; Kalita M; Brett PJ; Gregory AE; Samuel JE; Titball RW; Torres AG Clin Vaccine Immunol; 2017 Nov; 24(11):. PubMed ID: 28903988 [No Abstract] [Full Text] [Related]
5. Subtractive proteomics-guided vaccine targets identification and designing of multi-epitopes vaccine for immune response instigation against Burkholderia pseudomallei. Alshabrmi FM; Alatawi EA Int J Biol Macromol; 2024 Jun; 270(Pt 1):132105. PubMed ID: 38710251 [TBL] [Abstract][Full Text] [Related]
6. Putative new combination vaccine candidates identified by reverse vaccinology and genomic approaches to control enteric pathogens. Mikaeel S; Doosti A; Sharifzadeh A BMC Immunol; 2024 Jul; 25(1):46. PubMed ID: 39034396 [TBL] [Abstract][Full Text] [Related]
7. Design of Soltan MA; Magdy D; Solyman SM; Hanora A OMICS; 2020 Apr; 24(4):195-204. PubMed ID: 32286190 [TBL] [Abstract][Full Text] [Related]
8. Identification of epitope-based peptide vaccine candidates against enterotoxigenic Escherichia coli: a comparative genomics and immunoinformatics approach. Mehla K; Ramana J Mol Biosyst; 2016 Mar; 12(3):890-901. PubMed ID: 26766131 [TBL] [Abstract][Full Text] [Related]
9. Toward a chimeric vaccine against multiple isolates of Mycobacteroides - An integrative approach. Satyam R; Bhardwaj T; Jha NK; Jha SK; Nand P Life Sci; 2020 Jun; 250():117541. PubMed ID: 32169520 [TBL] [Abstract][Full Text] [Related]
10. Prioritization of potential vaccine candidates and designing a multiepitope-based subunit vaccine against multidrug-resistant Salmonella Typhi str. CT18: A subtractive proteomics and immunoinformatics approach. Chand Y; Singh S Microb Pathog; 2021 Oct; 159():105150. PubMed ID: 34425197 [TBL] [Abstract][Full Text] [Related]
11. T Cell Immunity to the Alkyl Hydroperoxide Reductase of Burkholderia pseudomallei: A Correlate of Disease Outcome in Acute Melioidosis. Reynolds C; Goudet A; Jenjaroen K; Sumonwiriya M; Rinchai D; Musson J; Overbeek S; Makinde J; Quigley K; Manji J; Spink N; Yos P; Wuthiekanun V; Bancroft G; Robinson J; Lertmemongkolchai G; Dunachie S; Maillere B; Holden M; Altmann D; Boyton R J Immunol; 2015 May; 194(10):4814-24. PubMed ID: 25862821 [TBL] [Abstract][Full Text] [Related]
12. An integrated in silico approach for the identification of novel potential drug target and chimeric vaccine against Neisseria meningitides strain 331401 serogroup X by subtractive genomics and reverse vaccinology. Asad M; Hassan A; Wang W; Alonazi WB; Khan MS; Ogunyemi SO; Ibrahim M; Bin L Comput Biol Med; 2024 Aug; 178():108738. PubMed ID: 38870724 [TBL] [Abstract][Full Text] [Related]
13. Genome-Wide Prediction of Potential Vaccine Candidates for Campylobacter jejuni Using Reverse Vaccinology. Jain R; Singh S; Verma SK; Jain A Interdiscip Sci; 2019 Sep; 11(3):337-347. PubMed ID: 29128919 [TBL] [Abstract][Full Text] [Related]
14. EpitoCore: Mining Conserved Epitope Vaccine Candidates in the Core Proteome of Multiple Bacteria Strains. Fiuza TS; Lima JPMS; de Souza GA Front Immunol; 2020; 11():816. PubMed ID: 32431712 [TBL] [Abstract][Full Text] [Related]
15. Subtractive proteomics and immunoinformatics revealed novel B-cell derived T-cell epitopes against Yersinia enterocolitica: An etiological agent of Yersiniosis. Ain QU; Ahmad S; Azam SS Microb Pathog; 2018 Dec; 125():336-348. PubMed ID: 30273644 [TBL] [Abstract][Full Text] [Related]
16. An In Silico Identification of Common Putative Vaccine Candidates against Treponema pallidum: A Reverse Vaccinology and Subtractive Genomics Based Approach. Kumar Jaiswal A; Tiwari S; Jamal SB; Barh D; Azevedo V; Soares SC Int J Mol Sci; 2017 Feb; 18(2):. PubMed ID: 28216574 [TBL] [Abstract][Full Text] [Related]
17. Subtractive proteomics to identify novel drug targets and reverse vaccinology for the development of chimeric vaccine against Acinetobacter baumannii. Solanki V; Tiwari V Sci Rep; 2018 Jun; 8(1):9044. PubMed ID: 29899345 [TBL] [Abstract][Full Text] [Related]
18. Novel gain of function approaches for vaccine candidate identification in Burkholderia pseudomallei. Dowling AJ Front Cell Infect Microbiol; 2012; 2():139. PubMed ID: 23316481 [TBL] [Abstract][Full Text] [Related]
19. Identification of a LolC homologue in Burkholderia pseudomallei, a novel protective antigen for melioidosis. Harland DN; Chu K; Haque A; Nelson M; Walker NJ; Sarkar-Tyson M; Atkins TP; Moore B; Brown KA; Bancroft G; Titball RW; Atkins HS Infect Immun; 2007 Aug; 75(8):4173-80. PubMed ID: 17517877 [TBL] [Abstract][Full Text] [Related]