BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

427 related articles for article (PubMed ID: 30243703)

  • 1. The role of chelating agents and amino acids in preventing free radical formation in bleaching systems.
    Hodes J; Sielaff P; Metz H; Kessler-Becker D; Gassenmeier T; Neubert RHH
    Free Radic Biol Med; 2018 Dec; 129():194-201. PubMed ID: 30243703
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Detection of Hydroxyl and Perhydroxyl Radical Generation from Bleaching Agents with Nuclear Magnetic Resonance Spectroscopy.
    Sharma H; Sharma DS
    J Clin Pediatr Dent; 2017; 41(2):126-134. PubMed ID: 28288300
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effects of chelating agents on radical generation in alkaline peroxide systems, and the relevance to substrate damage.
    Fowles EH; Gilbert BC; Giles MR; Whitwood AC
    Free Radic Res; 2007 May; 41(5):515-22. PubMed ID: 17454134
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Iron-chelating agents never suppress Fenton reaction but participate in quenching spin-trapped radicals.
    Li L; Abe Y; Kanagawa K; Shoji T; Mashino T; Mochizuki M; Tanaka M; Miyata N
    Anal Chim Acta; 2007 Sep; 599(2):315-9. PubMed ID: 17870296
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The role of chelants in controlling Cu(II)-induced radical chemistry in oxidative hair colouring products.
    Naqvi KR; Marsh JM; Godfrey S; Davis MG; Flagler MJ; Hao J; Chechik V
    Int J Cosmet Sci; 2013 Feb; 35(1):41-9. PubMed ID: 22950483
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The hydrolysis product of ICRF-187 promotes iron-catalysed hydroxyl radical production via the Fenton reaction.
    Thomas C; Vile GF; Winterbourn CC
    Biochem Pharmacol; 1993 May; 45(10):1967-72. PubMed ID: 8390256
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reactions of copper(II)-N-polycarboxylate complexes with hydrogen peroxide in the presence of biological reductants: ESR evidence for the formation of hydroxyl radical.
    Ozawa T; Hanaki A; Onodera K; Kasai M
    Biochem Int; 1992 Mar; 26(3):477-83. PubMed ID: 1320883
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hydroxyl radical formation from cuprous ion and hydrogen peroxide: a spin-trapping study.
    Gunther MR; Hanna PM; Mason RP; Cohen MS
    Arch Biochem Biophys; 1995 Jan; 316(1):515-22. PubMed ID: 7840659
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effective inhibition of copper-catalyzed production of hydroxyl radicals by deferiprone.
    Timoshnikov VA; Kobzeva T; Selyutina OY; Polyakov NE; Kontoghiorghes GJ
    J Biol Inorg Chem; 2019 May; 24(3):331-341. PubMed ID: 30868263
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Oxygen-derived free radical and active oxygen complex formation from cobalt(II) chelates in vitro.
    Hanna PM; Kadiiska MB; Mason RP
    Chem Res Toxicol; 1992; 5(1):109-15. PubMed ID: 1316186
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characteristic bleaching profiles of cyanine dyes depending on active oxygen species in the controlled Fenton reaction.
    Nakagawa Y; Hori H; Yamamoto I; Terada H
    Biol Pharm Bull; 1993 Nov; 16(11):1061-4. PubMed ID: 8312855
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Direct evidence for inhibition of free radical formation from Cu(I) and hydrogen peroxide by glutathione and other potential ligands using the EPR spin-trapping technique.
    Hanna PM; Mason RP
    Arch Biochem Biophys; 1992 May; 295(1):205-13. PubMed ID: 1315504
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Role of molecular oxygen in the generation of hydroxyl and superoxide anion radicals during enzymatic Cr(VI) reduction and its implication to Cr(VI)-induced carcinogenesis.
    Leonard S; Wang S; Zang L; Castranova V; Vallyathan V; Shi X
    J Environ Pathol Toxicol Oncol; 2000; 19(1-2):49-60. PubMed ID: 10905508
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inhibition of Fe(2+)- and Fe(3+)- induced hydroxyl radical production by the iron-chelating drug deferiprone.
    Timoshnikov VA; Kobzeva TV; Polyakov NE; Kontoghiorghes GJ
    Free Radic Biol Med; 2015 Jan; 78():118-22. PubMed ID: 25451643
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Superoxide dismutase enhanced the formation of hydroxyl radicals in a reaction mixture containing xanthone under UVA irradiation.
    Mori H; Iwahashi H
    Biosci Biotechnol Biochem; 2007 Dec; 71(12):3014-8. PubMed ID: 18071267
    [TBL] [Abstract][Full Text] [Related]  

  • 16. When are metal ion-dependent hydroxyl and alkoxyl radical adducts of 5,5-dimethyl-1-pyrroline N-oxide artifacts?
    Hanna PM; Chamulitrat W; Mason RP
    Arch Biochem Biophys; 1992 Aug; 296(2):640-4. PubMed ID: 1321591
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of copper ions on the free radical-scavenging properties of reduced gluthathione: implications of a complex formation.
    Jiménez I; Speisky H
    J Trace Elem Med Biol; 2000 Oct; 14(3):161-7. PubMed ID: 11130853
    [TBL] [Abstract][Full Text] [Related]  

  • 18. UV damage to hair and the effect of antioxidants and metal chelators.
    Millington KR; Marsh JM
    Int J Cosmet Sci; 2020 Apr; 42(2):174-184. PubMed ID: 31955440
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hydroxyl radical generation by coal mine dust: possible implication to coal workers' pneumoconiosis (CWP).
    Dalal NS; Newman J; Pack D; Leonard S; Vallyathan V
    Free Radic Biol Med; 1995 Jan; 18(1):11-20. PubMed ID: 7896164
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bioavailability and catalytic properties of copper and iron for Fenton chemistry in human cerebrospinal fluid.
    Spasojević I; Mojović M; Stević Z; Spasić SD; Jones DR; Morina A; Spasić MB
    Redox Rep; 2010; 15(1):29-35. PubMed ID: 20196926
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.