These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

428 related articles for article (PubMed ID: 30243703)

  • 1. The role of chelating agents and amino acids in preventing free radical formation in bleaching systems.
    Hodes J; Sielaff P; Metz H; Kessler-Becker D; Gassenmeier T; Neubert RHH
    Free Radic Biol Med; 2018 Dec; 129():194-201. PubMed ID: 30243703
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Detection of Hydroxyl and Perhydroxyl Radical Generation from Bleaching Agents with Nuclear Magnetic Resonance Spectroscopy.
    Sharma H; Sharma DS
    J Clin Pediatr Dent; 2017; 41(2):126-134. PubMed ID: 28288300
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effects of chelating agents on radical generation in alkaline peroxide systems, and the relevance to substrate damage.
    Fowles EH; Gilbert BC; Giles MR; Whitwood AC
    Free Radic Res; 2007 May; 41(5):515-22. PubMed ID: 17454134
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Iron-chelating agents never suppress Fenton reaction but participate in quenching spin-trapped radicals.
    Li L; Abe Y; Kanagawa K; Shoji T; Mashino T; Mochizuki M; Tanaka M; Miyata N
    Anal Chim Acta; 2007 Sep; 599(2):315-9. PubMed ID: 17870296
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The role of chelants in controlling Cu(II)-induced radical chemistry in oxidative hair colouring products.
    Naqvi KR; Marsh JM; Godfrey S; Davis MG; Flagler MJ; Hao J; Chechik V
    Int J Cosmet Sci; 2013 Feb; 35(1):41-9. PubMed ID: 22950483
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The hydrolysis product of ICRF-187 promotes iron-catalysed hydroxyl radical production via the Fenton reaction.
    Thomas C; Vile GF; Winterbourn CC
    Biochem Pharmacol; 1993 May; 45(10):1967-72. PubMed ID: 8390256
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reactions of copper(II)-N-polycarboxylate complexes with hydrogen peroxide in the presence of biological reductants: ESR evidence for the formation of hydroxyl radical.
    Ozawa T; Hanaki A; Onodera K; Kasai M
    Biochem Int; 1992 Mar; 26(3):477-83. PubMed ID: 1320883
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hydroxyl radical formation from cuprous ion and hydrogen peroxide: a spin-trapping study.
    Gunther MR; Hanna PM; Mason RP; Cohen MS
    Arch Biochem Biophys; 1995 Jan; 316(1):515-22. PubMed ID: 7840659
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effective inhibition of copper-catalyzed production of hydroxyl radicals by deferiprone.
    Timoshnikov VA; Kobzeva T; Selyutina OY; Polyakov NE; Kontoghiorghes GJ
    J Biol Inorg Chem; 2019 May; 24(3):331-341. PubMed ID: 30868263
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Oxygen-derived free radical and active oxygen complex formation from cobalt(II) chelates in vitro.
    Hanna PM; Kadiiska MB; Mason RP
    Chem Res Toxicol; 1992; 5(1):109-15. PubMed ID: 1316186
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characteristic bleaching profiles of cyanine dyes depending on active oxygen species in the controlled Fenton reaction.
    Nakagawa Y; Hori H; Yamamoto I; Terada H
    Biol Pharm Bull; 1993 Nov; 16(11):1061-4. PubMed ID: 8312855
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Direct evidence for inhibition of free radical formation from Cu(I) and hydrogen peroxide by glutathione and other potential ligands using the EPR spin-trapping technique.
    Hanna PM; Mason RP
    Arch Biochem Biophys; 1992 May; 295(1):205-13. PubMed ID: 1315504
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Role of molecular oxygen in the generation of hydroxyl and superoxide anion radicals during enzymatic Cr(VI) reduction and its implication to Cr(VI)-induced carcinogenesis.
    Leonard S; Wang S; Zang L; Castranova V; Vallyathan V; Shi X
    J Environ Pathol Toxicol Oncol; 2000; 19(1-2):49-60. PubMed ID: 10905508
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inhibition of Fe(2+)- and Fe(3+)- induced hydroxyl radical production by the iron-chelating drug deferiprone.
    Timoshnikov VA; Kobzeva TV; Polyakov NE; Kontoghiorghes GJ
    Free Radic Biol Med; 2015 Jan; 78():118-22. PubMed ID: 25451643
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Superoxide dismutase enhanced the formation of hydroxyl radicals in a reaction mixture containing xanthone under UVA irradiation.
    Mori H; Iwahashi H
    Biosci Biotechnol Biochem; 2007 Dec; 71(12):3014-8. PubMed ID: 18071267
    [TBL] [Abstract][Full Text] [Related]  

  • 16. When are metal ion-dependent hydroxyl and alkoxyl radical adducts of 5,5-dimethyl-1-pyrroline N-oxide artifacts?
    Hanna PM; Chamulitrat W; Mason RP
    Arch Biochem Biophys; 1992 Aug; 296(2):640-4. PubMed ID: 1321591
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of copper ions on the free radical-scavenging properties of reduced gluthathione: implications of a complex formation.
    Jiménez I; Speisky H
    J Trace Elem Med Biol; 2000 Oct; 14(3):161-7. PubMed ID: 11130853
    [TBL] [Abstract][Full Text] [Related]  

  • 18. UV damage to hair and the effect of antioxidants and metal chelators.
    Millington KR; Marsh JM
    Int J Cosmet Sci; 2020 Apr; 42(2):174-184. PubMed ID: 31955440
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hydroxyl radical generation by coal mine dust: possible implication to coal workers' pneumoconiosis (CWP).
    Dalal NS; Newman J; Pack D; Leonard S; Vallyathan V
    Free Radic Biol Med; 1995 Jan; 18(1):11-20. PubMed ID: 7896164
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bioavailability and catalytic properties of copper and iron for Fenton chemistry in human cerebrospinal fluid.
    Spasojević I; Mojović M; Stević Z; Spasić SD; Jones DR; Morina A; Spasić MB
    Redox Rep; 2010; 15(1):29-35. PubMed ID: 20196926
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.