These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 30243720)

  • 1. Unique methionine-aromatic interactions govern the calmodulin redox sensor.
    Walgenbach DG; Gregory AJ; Klein JC
    Biochem Biophys Res Commun; 2018 Oct; 505(1):236-241. PubMed ID: 30243720
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Impact of methionine oxidation on calmodulin structural dynamics.
    McCarthy MR; Thompson AR; Nitu F; Moen RJ; Olenek MJ; Klein JC; Thomas DD
    Biochem Biophys Res Commun; 2015 Jan; 456(2):567-72. PubMed ID: 25478640
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thioredoxin-dependent redox regulation of cellular signaling and stress response through reversible oxidation of methionines.
    Bigelow DJ; Squier TC
    Mol Biosyst; 2011 Jul; 7(7):2101-9. PubMed ID: 21594273
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Loss of the calmodulin-dependent inhibition of the RyR1 calcium release channel upon oxidation of methionines in calmodulin.
    Boschek CB; Jones TE; Smallwood HS; Squier TC; Bigelow DJ
    Biochemistry; 2008 Jan; 47(1):131-42. PubMed ID: 18076146
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Met125 is essential for maintaining the structural integrity of calmodulin's C-terminal domain.
    Nelson SED; Weber DK; Rebbeck RT; Cornea RL; Veglia G; Thomas DD
    Sci Rep; 2020 Dec; 10(1):21320. PubMed ID: 33288831
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sulphur Atoms from Methionines Interacting with Aromatic Residues Are Less Prone to Oxidation.
    Aledo JC; Cantón FR; Veredas FJ
    Sci Rep; 2015 Nov; 5():16955. PubMed ID: 26597773
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Free-energy simulations of the oxidation of c-terminal methionines in calmodulin.
    Jas GS; Kuczera K
    Proteins; 2002 Aug; 48(2):257-68. PubMed ID: 12112694
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Redox modulation of cellular signaling and metabolism through reversible oxidation of methionine sensors in calcium regulatory proteins.
    Bigelow DJ; Squier TC
    Biochim Biophys Acta; 2005 Jan; 1703(2):121-34. PubMed ID: 15680220
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Oxidation increases the strength of the methionine-aromatic interaction.
    Lewis AK; Dunleavy KM; Senkow TL; Her C; Horn BT; Jersett MA; Mahling R; McCarthy MR; Perell GT; Valley CC; Karim CB; Gao J; Pomerantz WC; Thomas DD; Cembran A; Hinderliter A; Sachs JN
    Nat Chem Biol; 2016 Oct; 12(10):860-6. PubMed ID: 27547920
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cation binding mode of fully oxidised calmodulin explained by the unfolding of the apostate.
    Lafitte D; Tsvetkov PO; Devred F; Toci R; Barras F; Briand C; Makarov AA; Haiech J
    Biochim Biophys Acta; 2002 Nov; 1600(1-2):105-10. PubMed ID: 12445465
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An altered mode of calcium coordination in methionine-oxidized calmodulin.
    Jones EM; Squier TC; Sacksteder CA
    Biophys J; 2008 Dec; 95(11):5268-80. PubMed ID: 18723592
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mediating molecular recognition by methionine oxidation: conformational switching by oxidation of methionine in the carboxyl-terminal domain of calmodulin.
    Anbanandam A; Bieber Urbauer RJ; Bartlett RK; Smallwood HS; Squier TC; Urbauer JL
    Biochemistry; 2005 Jul; 44(27):9486-96. PubMed ID: 15996103
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Oxidation of Met144 and Met145 in calmodulin blocks calmodulin dependent activation of the plasma membrane Ca-ATPase.
    Bartlett RK; Bieber Urbauer RJ; Anbanandam A; Smallwood HS; Urbauer JL; Squier TC
    Biochemistry; 2003 Mar; 42(11):3231-8. PubMed ID: 12641454
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Oxidative modification of a carboxyl-terminal vicinal methionine in calmodulin by hydrogen peroxide inhibits calmodulin-dependent activation of the plasma membrane Ca-ATPase.
    Yao Y; Yin D; Jas GS; Kuczer K; Williams TD; Schöneich C; Squier TC
    Biochemistry; 1996 Feb; 35(8):2767-87. PubMed ID: 8611584
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Different Roles of N-Terminal and C-Terminal Domains in Calmodulin for Activation of Bacillus anthracis Edema Factor.
    Lübker C; Dove S; Tang WJ; Urbauer RJ; Moskovitz J; Urbauer JL; Seifert R
    Toxins (Basel); 2015 Jul; 7(7):2598-614. PubMed ID: 26184312
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Site-specific methionine oxidation initiates calmodulin degradation by the 20S proteasome.
    Balog EM; Lockamy EL; Thomas DD; Ferrington DA
    Biochemistry; 2009 Apr; 48(13):3005-16. PubMed ID: 19231837
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nonessential role for methionines in the productive association between calmodulin and the plasma membrane Ca-ATPase.
    Yin D; Sun H; Weaver RF; Squier TC
    Biochemistry; 1999 Oct; 38(41):13654-60. PubMed ID: 10521272
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular mechanisms of calmodulin's functional versatility.
    Zhang M; Yuan T
    Biochem Cell Biol; 1998; 76(2-3):313-23. PubMed ID: 9923700
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Calorimetry and mass spectrometry study of oxidized calmodulin interaction with target and differential repair by methionine sulfoxide reductases.
    Tsvetkov PO; Ezraty B; Mitchell JK; Devred F; Peyrot V; Derrick PJ; Barras F; Makarov AA; Lafitte D
    Biochimie; 2005 May; 87(5):473-80. PubMed ID: 15820754
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Calcium-induced conformational transition revealed by the solution structure of apo calmodulin.
    Zhang M; Tanaka T; Ikura M
    Nat Struct Biol; 1995 Sep; 2(9):758-67. PubMed ID: 7552747
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.