These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
202 related articles for article (PubMed ID: 30243723)
21. Hypoxia/HIF1α induces lapatinib resistance in ERBB2-positive breast cancer cells via regulation of DUSP2. Karakashev SV; Reginato MJ Oncotarget; 2015 Feb; 6(4):1967-80. PubMed ID: 25596742 [TBL] [Abstract][Full Text] [Related]
22. Interleukin-6 expression contributes to lapatinib resistance through maintenance of stemness property in HER2-positive breast cancer cells. Huang WC; Hung CM; Wei CT; Chen TM; Chien PH; Pan HL; Lin YM; Chen YJ Oncotarget; 2016 Sep; 7(38):62352-62363. PubMed ID: 27694691 [TBL] [Abstract][Full Text] [Related]
23. A small-molecule inhibitor of SMAD3 attenuates resistance to anti-HER2 drugs in HER2-positive breast cancer cells. Chihara Y; Shimoda M; Hori A; Ohara A; Naoi Y; Ikeda JI; Kagara N; Tanei T; Shimomura A; Shimazu K; Kim SJ; Noguchi S Breast Cancer Res Treat; 2017 Nov; 166(1):55-68. PubMed ID: 28702892 [TBL] [Abstract][Full Text] [Related]
24. Lapatinib inhibits the activation of NF-κB through reducing phosphorylation of IκB-α in breast cancer cells. Ma C; Zuo W; Wang X; Wei L; Guo Q; Song X Oncol Rep; 2013 Feb; 29(2):812-8. PubMed ID: 23229346 [TBL] [Abstract][Full Text] [Related]
25. Switching addictions between HER2 and FGFR2 in HER2-positive breast tumor cells: FGFR2 as a potential target for salvage after lapatinib failure. Azuma K; Tsurutani J; Sakai K; Kaneda H; Fujisaka Y; Takeda M; Watatani M; Arao T; Satoh T; Okamoto I; Kurata T; Nishio K; Nakagawa K Biochem Biophys Res Commun; 2011 Apr; 407(1):219-24. PubMed ID: 21377448 [TBL] [Abstract][Full Text] [Related]
26. Artemisia argyi extracts overcome lapatinib resistance via enhancing TMPRSS2 activation in HER2-positive breast cancer. Ho CY; Wei CY; Zhao RW; Ye YL; Huang HC; Lee JC; Cheng FJ; Huang WC Environ Toxicol; 2024 Jun; 39(6):3389-3399. PubMed ID: 38445457 [TBL] [Abstract][Full Text] [Related]
27. Enhanced PI3K p110α signaling confers acquired lapatinib resistance that can be effectively reversed by a p110α-selective PI3K inhibitor. Brady SW; Zhang J; Seok D; Wang H; Yu D Mol Cancer Ther; 2014 Jan; 13(1):60-70. PubMed ID: 24249715 [TBL] [Abstract][Full Text] [Related]
28. Niclosamide inhibits epithelial-mesenchymal transition and tumor growth in lapatinib-resistant human epidermal growth factor receptor 2-positive breast cancer. Liu J; Chen X; Ward T; Mao Y; Bockhorn J; Liu X; Wang G; Pegram M; Shen K Int J Biochem Cell Biol; 2016 Feb; 71():12-23. PubMed ID: 26643609 [TBL] [Abstract][Full Text] [Related]
30. PI3K PROTAC overcomes the lapatinib resistance in PIK3CA-mutant HER2 positive breast cancer. Zhang H; Zhang L; He Y; Jiang D; Sun J; Luo Q; Liang H; Wang T; Li F; Tang Y; Yang Z; Liu W; Rao Y; Chen C Cancer Lett; 2024 Aug; 598():217112. PubMed ID: 38986734 [TBL] [Abstract][Full Text] [Related]
31. Novel Hsp90 inhibitor FW-04-806 displays potent antitumor effects in HER2-positive breast cancer cells as a single agent or in combination with lapatinib. Huang W; Wu QD; Zhang M; Kong YL; Cao PR; Zheng W; Xu JH; Ye M Cancer Lett; 2015 Jan; 356(2 Pt B):862-71. PubMed ID: 25449780 [TBL] [Abstract][Full Text] [Related]
32. HO-1 drives autophagy as a mechanism of resistance against HER2-targeted therapies. Tracey N; Creedon H; Kemp AJ; Culley J; Muir M; Klinowska T; Brunton VG Breast Cancer Res Treat; 2020 Feb; 179(3):543-555. PubMed ID: 31705351 [TBL] [Abstract][Full Text] [Related]
33. Radiosensitizing effect of lapatinib in human epidermal growth factor receptor 2-positive breast cancer cells. Yu T; Cho BJ; Choi EJ; Park JM; Kim DH; Kim IA Oncotarget; 2016 Nov; 7(48):79089-79100. PubMed ID: 27738326 [TBL] [Abstract][Full Text] [Related]
34. Combination of lapatinib with isothiocyanates overcomes drug resistance and inhibits migration of HER2 positive breast cancer cells. Kaczyńska A; Herman-Antosiewicz A Breast Cancer; 2017 Mar; 24(2):271-280. PubMed ID: 27154770 [TBL] [Abstract][Full Text] [Related]
35. An insertion mutation of ERBB2 enhances breast cancer cell growth and confers resistance to lapatinib through AKT signaling pathway. Yang ZY; Yang L; Xu CW; Wang XJ; Lei L Biol Open; 2020 Jan; 9(1):. PubMed ID: 31980423 [TBL] [Abstract][Full Text] [Related]
36. A SNAI2-PEAK1-INHBA stromal axis drives progression and lapatinib resistance in HER2-positive breast cancer by supporting subpopulations of tumor cells positive for antiapoptotic and stress signaling markers. Hamalian S; Güth R; Runa F; Sanchez F; Vickers E; Agajanian M; Molnar J; Nguyen T; Gamez J; Humphries JD; Nayak A; Humphries MJ; Tchou J; Zervantonakis IK; Kelber JA Oncogene; 2021 Aug; 40(33):5224-5235. PubMed ID: 34239043 [TBL] [Abstract][Full Text] [Related]
37. Microenvironment-Mediated Mechanisms of Resistance to HER2 Inhibitors Differ between HER2+ Breast Cancer Subtypes. Watson SS; Dane M; Chin K; Tatarova Z; Liu M; Liby T; Thompson W; Smith R; Nederlof M; Bucher E; Kilburn D; Whitman M; Sudar D; Mills GB; Heiser LM; Jonas O; Gray JW; Korkola JE Cell Syst; 2018 Mar; 6(3):329-342.e6. PubMed ID: 29550255 [TBL] [Abstract][Full Text] [Related]
38. Testican-1-mediated epithelial-mesenchymal transition signaling confers acquired resistance to lapatinib in HER2-positive gastric cancer. Kim HP; Han SW; Song SH; Jeong EG; Lee MY; Hwang D; Im SA; Bang YJ; Kim TY Oncogene; 2014 Jun; 33(25):3334-41. PubMed ID: 23873022 [TBL] [Abstract][Full Text] [Related]
39. Chemical probing of HER2-amplified cancer cells identifies TORC2 as a particularly effective secondary target for combination with lapatinib. Amin DN; Ruiz-Saenz A; Gulizia N; Moasser MM Oncotarget; 2015 Dec; 6(38):41123-33. PubMed ID: 26516700 [TBL] [Abstract][Full Text] [Related]
40. IGF1R signaling drives antiestrogen resistance through PAK2/PIX activation in luminal breast cancer. Zhang Y; Wester L; He J; Geiger T; Moerkens M; Siddappa R; Helmijr JA; Timmermans MM; Look MP; van Deurzen CHM; Martens JWM; Pont C; de Graauw M; Danen EHJ; Berns EMJJ; Meerman JHN; Jansen MPHM; van de Water B Oncogene; 2018 Apr; 37(14):1869-1884. PubMed ID: 29353882 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]