These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
101 related articles for article (PubMed ID: 30243923)
1. The antimicrobial peptides casocidins I and II: Solution structural studies in water and different membrane-mimetic environments. Mercurio FA; Scaloni A; Caira S; Leone M Peptides; 2019 Apr; 114():50-58. PubMed ID: 30243923 [TBL] [Abstract][Full Text] [Related]
2. On the interaction of the highly charged peptides casocidins with biomimetic membranes. Becucci L; Aloisi G; Scaloni A; Caira S; Guidelli R Bioelectrochemistry; 2018 Oct; 123():1-8. PubMed ID: 29715585 [TBL] [Abstract][Full Text] [Related]
3. Dermaseptin S9, an alpha-helical antimicrobial peptide with a hydrophobic core and cationic termini. Lequin O; Ladram A; Chabbert L; Bruston F; Convert O; Vanhoye D; Chassaing G; Nicolas P; Amiche M Biochemistry; 2006 Jan; 45(2):468-80. PubMed ID: 16401077 [TBL] [Abstract][Full Text] [Related]
4. Solution structures of stomoxyn and spinigerin, two insect antimicrobial peptides with an alpha-helical conformation. Landon C; Meudal H; Boulanger N; Bulet P; Vovelle F Biopolymers; 2006 Feb; 81(2):92-103. PubMed ID: 16170803 [TBL] [Abstract][Full Text] [Related]
5. Effect of antimicrobial peptides from Australian tree frogs on anionic phospholipid membranes. Gehman JD; Luc F; Hall K; Lee TH; Boland MP; Pukala TL; Bowie JH; Aguilar MI; Separovic F Biochemistry; 2008 Aug; 47(33):8557-65. PubMed ID: 18652483 [TBL] [Abstract][Full Text] [Related]
7. Toward an improved structural model of the frog-skin antimicrobial peptide esculentin-1b(1-18). Manzo G; Sanna R; Casu M; Mignogna G; Mangoni ML; Rinaldi AC; Scorciapino MA Biopolymers; 2012 Nov; 97(11):873-81. PubMed ID: 22899362 [TBL] [Abstract][Full Text] [Related]
8. Conformational and membrane interaction studies of the antimicrobial peptide alyteserin-1c and its analogue [E4K]alyteserin-1c. Subasinghage AP; O'Flynn D; Conlon JM; Hewage CM Biochim Biophys Acta; 2011 Aug; 1808(8):1975-84. PubMed ID: 21565166 [TBL] [Abstract][Full Text] [Related]
9. Solid-state nuclear magnetic resonance relaxation studies of the interaction mechanism of antimicrobial peptides with phospholipid bilayer membranes. Lu JX; Damodaran K; Blazyk J; Lorigan GA Biochemistry; 2005 Aug; 44(30):10208-17. PubMed ID: 16042398 [TBL] [Abstract][Full Text] [Related]
10. Structure and mechanism of action of the antimicrobial peptide piscidin. Campagna S; Saint N; Molle G; Aumelas A Biochemistry; 2007 Feb; 46(7):1771-8. PubMed ID: 17253775 [TBL] [Abstract][Full Text] [Related]
11. A two-dimensional NMR study of the antimicrobial peptide magainin 2. Marion D; Zasloff M; Bax A FEBS Lett; 1988 Jan; 227(1):21-6. PubMed ID: 3338566 [TBL] [Abstract][Full Text] [Related]
12. Characterization of the structure and dynamics of mastoparan-X during folding in aqueous TFE by CD and NMR spectroscopy. Crandall YM; Bruch MD Biopolymers; 2008 Mar; 89(3):197-209. PubMed ID: 18008325 [TBL] [Abstract][Full Text] [Related]
13. Membrane interactions and conformational preferences of human and avian prion N-terminal tandem repeats: the role of copper(II) ions, pH, and membrane mimicking environments. Di Natale G; Pappalardo G; Milardi D; Sciacca MF; Attanasio F; La Mendola D; Rizzarelli E J Phys Chem B; 2010 Nov; 114(43):13830-8. PubMed ID: 20936829 [TBL] [Abstract][Full Text] [Related]
14. Folded structure and insertion depth of the frog-skin antimicrobial Peptide esculentin-1b(1-18) in the presence of differently charged membrane-mimicking micelles. Manzo G; Casu M; Rinaldi AC; Montaldo NP; Luganini A; Gribaudo G; Scorciapino MA J Nat Prod; 2014 Nov; 77(11):2410-7. PubMed ID: 25337981 [TBL] [Abstract][Full Text] [Related]
16. Conformation, dynamics, and insertion of a noncysteine-containing protegrin-1 analogue in lipid membranes from solid-state NMR spectroscopy. Mani R; Waring AJ; Hong M Chembiochem; 2007 Oct; 8(15):1877-84. PubMed ID: 17868158 [TBL] [Abstract][Full Text] [Related]
17. Role of Cationic Side Chains in the Antimicrobial Activity of C18G. Kohn EM; Shirley DJ; Arotsky L; Picciano AM; Ridgway Z; Urban MW; Carone BR; Caputo GA Molecules; 2018 Feb; 23(2):. PubMed ID: 29401708 [TBL] [Abstract][Full Text] [Related]
18. Structural and DNA-binding studies on the bovine antimicrobial peptide, indolicidin: evidence for multiple conformations involved in binding to membranes and DNA. Hsu CH; Chen C; Jou ML; Lee AY; Lin YC; Yu YP; Huang WT; Wu SH Nucleic Acids Res; 2005; 33(13):4053-64. PubMed ID: 16034027 [TBL] [Abstract][Full Text] [Related]
19. Molecular dynamics simulation of the membrane binding and disruption mechanisms by antimicrobial scorpion venom-derived peptides. Velasco-Bolom JL; Corzo G; Garduño-Juárez R J Biomol Struct Dyn; 2018 Jun; 36(8):2070-2084. PubMed ID: 28604248 [TBL] [Abstract][Full Text] [Related]