BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

257 related articles for article (PubMed ID: 30244178)

  • 1. L-plastin phosphorylation regulates the early phase of sealing ring formation by actin bundling process in mouse osteoclasts.
    Chellaiah MA; Ma T; Majumdar S
    Exp Cell Res; 2018 Nov; 372(1):73-82. PubMed ID: 30244178
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Peptidomimetic inhibitors of L-plastin reduce the resorptive activity of osteoclast but not the bone forming activity of osteoblasts in vitro.
    Chellaiah MA; Majumdar S; Aljohani H
    PLoS One; 2018; 13(9):e0204209. PubMed ID: 30248139
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Regulation of sealing ring formation by L-plastin and cortactin in osteoclasts.
    Ma T; Sadashivaiah K; Madayiputhiya N; Chellaiah MA
    J Biol Chem; 2010 Sep; 285(39):29911-24. PubMed ID: 20650888
    [TBL] [Abstract][Full Text] [Related]  

  • 4. L-Plastin Phosphorylation: Possible Regulation by a TNFR1 Signaling Cascade in Osteoclasts.
    Chellaiah MA
    Cells; 2021 Sep; 10(9):. PubMed ID: 34572081
    [TBL] [Abstract][Full Text] [Related]  

  • 5. L-Plastin deficiency produces increased trabecular bone due to attenuation of sealing ring formation and osteoclast dysfunction.
    Chellaiah MA; Moorer MC; Majumdar S; Aljohani H; Morley SC; Yingling V; Stains JP
    Bone Res; 2020; 8():3. PubMed ID: 31993243
    [TBL] [Abstract][Full Text] [Related]  

  • 6. LRRK1 regulation of actin assembly in osteoclasts involves serine 5 phosphorylation of L-plastin.
    Si M; Goodluck H; Zeng C; Pan S; Todd EM; Morley SC; Qin X; Mohan S; Xing W
    J Cell Biochem; 2018 Dec; 119(12):10351-10357. PubMed ID: 30136304
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A novel regulatory role of TRAPPC9 in L-plastin-mediated osteoclast actin ring formation.
    Hussein NJ; Mbimba T; Al-Adlaan AA; Ansari MY; Jaber FA; McDermott S; Kasumov T; Safadi FF
    J Cell Biochem; 2020 Jan; 121(1):284-298. PubMed ID: 31453638
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Polyphosphoinositides-dependent regulation of the osteoclast actin cytoskeleton and bone resorption.
    Biswas RS; Baker D; Hruska KA; Chellaiah MA
    BMC Cell Biol; 2004 May; 5():19. PubMed ID: 15142256
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The actin filament cross-linker L-plastin confers resistance to TNF-alpha in MCF-7 breast cancer cells in a phosphorylation-dependent manner.
    Janji B; Vallar L; Al Tanoury Z; Bernardin F; Vetter G; Schaffner-Reckinger E; Berchem G; Friederich E; Chouaib S
    J Cell Mol Med; 2010 Jun; 14(6A):1264-75. PubMed ID: 19799649
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparative transcriptomics reveals RhoE as a novel regulator of actin dynamics in bone-resorbing osteoclasts.
    Georgess D; Mazzorana M; Terrado J; Delprat C; Chamot C; Guasch RM; Pérez-Roger I; Jurdic P; Machuca-Gayet I
    Mol Biol Cell; 2014 Feb; 25(3):380-96. PubMed ID: 24284899
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cortactin has an essential and specific role in osteoclast actin assembly.
    Tehrani S; Faccio R; Chandrasekar I; Ross FP; Cooper JA
    Mol Biol Cell; 2006 Jul; 17(7):2882-95. PubMed ID: 16611741
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Apatite-mediated actin dynamics in resorbing osteoclasts.
    Saltel F; Destaing O; Bard F; Eichert D; Jurdic P
    Mol Biol Cell; 2004 Dec; 15(12):5231-41. PubMed ID: 15371537
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The architecture of the adhesive apparatus of cultured osteoclasts: from podosome formation to sealing zone assembly.
    Luxenburg C; Geblinger D; Klein E; Anderson K; Hanein D; Geiger B; Addadi L
    PLoS One; 2007 Jan; 2(1):e179. PubMed ID: 17264882
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tropomyosin 4 regulates adhesion structures and resorptive capacity in osteoclasts.
    McMichael BK; Lee BS
    Exp Cell Res; 2008 Feb; 314(3):564-73. PubMed ID: 18036591
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Engineering of L-Plastin Peptide-Loaded Biodegradable Nanoparticles for Sustained Delivery and Suppression of Osteoclast Function In Vitro.
    Majumdar S; Wadajkar AS; Aljohani H; Reynolds MA; Kim AJ; Chellaiah M
    Int J Cell Biol; 2019; 2019():6943986. PubMed ID: 31191656
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Podosome and sealing zone: specificity of the osteoclast model.
    Jurdic P; Saltel F; Chabadel A; Destaing O
    Eur J Cell Biol; 2006 Apr; 85(3-4):195-202. PubMed ID: 16546562
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Sealing Zone in Osteoclasts: A Self-Organized Structure on the Bone.
    Takito J; Inoue S; Nakamura M
    Int J Mol Sci; 2018 Mar; 19(4):. PubMed ID: 29587415
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Actin-Binding Protein Cofilin and Its Interaction With Cortactin Are Required for Podosome Patterning in Osteoclasts and Bone Resorption In Vivo and In Vitro.
    Zalli D; Neff L; Nagano K; Shin NY; Witke W; Gori F; Baron R
    J Bone Miner Res; 2016 Sep; 31(9):1701-12. PubMed ID: 27064822
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantitative kinetic study of the actin-bundling protein L-plastin and of its impact on actin turn-over.
    Al Tanoury Z; Schaffner-Reckinger E; Halavatyi A; Hoffmann C; Moes M; Hadzic E; Catillon M; Yatskou M; Friederich E
    PLoS One; 2010 Feb; 5(2):e9210. PubMed ID: 20169155
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nanoscale architecture and coordination of actin cores within the sealing zone of human osteoclasts.
    Portes M; Mangeat T; Escallier N; Dufrancais O; Raynaud-Messina B; Thibault C; Maridonneau-Parini I; Vérollet C; Poincloux R
    Elife; 2022 Jun; 11():. PubMed ID: 35727134
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.