BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

434 related articles for article (PubMed ID: 30244438)

  • 1. 3D Culture of Mesenchymal Stem Cells in Alginate Hydrogels.
    Bidarra SJ; Barrias CC
    Methods Mol Biol; 2019; 2002():165-180. PubMed ID: 30244438
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bioengineered cell-instructive 3D matrices as vehicles for cellular therapies.
    Barrias CC
    Annu Int Conf IEEE Eng Med Biol Soc; 2015 Aug; 2015():1737-40. PubMed ID: 26736613
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecularly designed alginate hydrogels susceptible to local proteolysis as three-dimensional cellular microenvironments.
    Fonseca KB; Bidarra SJ; Oliveira MJ; Granja PL; Barrias CC
    Acta Biomater; 2011 Apr; 7(4):1674-82. PubMed ID: 21193068
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Increased Survival and Function of Mesenchymal Stem Cell Spheroids Entrapped in Instructive Alginate Hydrogels.
    Ho SS; Murphy KC; Binder BY; Vissers CB; Leach JK
    Stem Cells Transl Med; 2016 Jun; 5(6):773-81. PubMed ID: 27057004
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The fate of mesenchymal stem cells is greatly influenced by the surface chemistry of silica nanoparticles in 3D hydrogel-based culture systems.
    Darouie S; Ansari Majd S; Rahimi F; Hashemi E; Kabirsalmani M; Dolatshahi-Pirouz A; Arpanaei A
    Mater Sci Eng C Mater Biol Appl; 2020 Jan; 106():110259. PubMed ID: 31753381
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sequential modes of crosslinking tune viscoelasticity of cell-instructive hydrogels.
    Vining KH; Stafford A; Mooney DJ
    Biomaterials; 2019 Jan; 188():187-197. PubMed ID: 30366219
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 3D Cell Culture in Interpenetrating Networks of Alginate and rBM Matrix.
    Wisdom K; Chaudhuri O
    Methods Mol Biol; 2017; 1612():29-37. PubMed ID: 28634933
    [TBL] [Abstract][Full Text] [Related]  

  • 8. RGD-peptide modified alginate by a chemoenzymatic strategy for tissue engineering applications.
    Sandvig I; Karstensen K; Rokstad AM; Aachmann FL; Formo K; Sandvig A; Skjåk-Bræk G; Strand BL
    J Biomed Mater Res A; 2015 Mar; 103(3):896-906. PubMed ID: 24826938
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Wet electrospun alginate/gelatin hydrogel nanofibers for 3D cell culture.
    Majidi SS; Slemming-Adamsen P; Hanif M; Zhang Z; Wang Z; Chen M
    Int J Biol Macromol; 2018 Oct; 118(Pt B):1648-1654. PubMed ID: 29981331
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High-Throughput Formation of Mesenchymal Stem Cell Spheroids and Entrapment in Alginate Hydrogels.
    Vorwald CE; Ho SS; Whitehead J; Leach JK
    Methods Mol Biol; 2018; 1758():139-149. PubMed ID: 29679328
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biochemical and structural characterization of neocartilage formed by mesenchymal stem cells in alginate hydrogels.
    Olderøy MØ; Lilledahl MB; Beckwith MS; Melvik JE; Reinholt F; Sikorski P; Brinchmann JE
    PLoS One; 2014; 9(3):e91662. PubMed ID: 24626259
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multipotency expression of human adipose stem cells in filament-like alginate and gelatin derivative hydrogel fabricated through visible light-initiated crosslinking.
    Khanmohammadi M; Nemati S; Ai J; Khademi F
    Mater Sci Eng C Mater Biol Appl; 2019 Oct; 103():109808. PubMed ID: 31349492
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Varying PEG density to control stress relaxation in alginate-PEG hydrogels for 3D cell culture studies.
    Nam S; Stowers R; Lou J; Xia Y; Chaudhuri O
    Biomaterials; 2019 Apr; 200():15-24. PubMed ID: 30743050
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Alginate-magnetic short nanofibers 3D composite hydrogel enhances the encapsulated human olfactory mucosa stem cells bioactivity for potential nerve regeneration application.
    Karimi S; Bagher Z; Najmoddin N; Simorgh S; Pezeshki-Modaress M
    Int J Biol Macromol; 2021 Jan; 167():796-806. PubMed ID: 33278440
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Silica nanoparticle surface chemistry: An important trait affecting cellular biocompatibility in two and three dimensional culture systems.
    Hasany M; Taebnia N; Yaghmaei S; Shahbazi MA; Mehrali M; Dolatshahi-Pirouz A; Arpanaei A
    Colloids Surf B Biointerfaces; 2019 Oct; 182():110353. PubMed ID: 31336281
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Injectable biodegradable hydrogels with tunable mechanical properties for the stimulation of neurogenesic differentiation of human mesenchymal stem cells in 3D culture.
    Wang LS; Chung JE; Chan PP; Kurisawa M
    Biomaterials; 2010 Feb; 31(6):1148-57. PubMed ID: 19892395
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The three dimensional cues-integrated-biomaterial potentiates differentiation of human mesenchymal stem cells.
    Park MH; Subbiah R; Kwon MJ; Kim WJ; Kim SH; Park K; Lee K
    Carbohydr Polym; 2018 Dec; 202():488-496. PubMed ID: 30287027
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biochemical and physical signal gradients in hydrogels to control stem cell behavior.
    Jeon O; Alt DS; Linderman SW; Alsberg E
    Adv Mater; 2013 Nov; 25(44):6366-72. PubMed ID: 23983019
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tuning Alginate Bioink Stiffness and Composition for Controlled Growth Factor Delivery and to Spatially Direct MSC Fate within Bioprinted Tissues.
    Freeman FE; Kelly DJ
    Sci Rep; 2017 Dec; 7(1):17042. PubMed ID: 29213126
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of cell density on mesenchymal stem cells aggregation in RGD-alginate 3D matrices under osteoinductive conditions.
    Maia FR; Lourenço AH; Granja PL; Gonçalves RM; Barrias CC
    Macromol Biosci; 2014 Jun; 14(6):759-71. PubMed ID: 24585449
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.