These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
190 related articles for article (PubMed ID: 30244581)
1. Direct Measurement of the Magnitude of the van der Waals Interaction of Single and Multilayer Graphene. Chiou YC; Olukan TA; Almahri MA; Apostoleris H; Chiu CH; Lai CY; Lu JY; Santos S; Almansouri I; Chiesa M Langmuir; 2018 Oct; 34(41):12335-12343. PubMed ID: 30244581 [TBL] [Abstract][Full Text] [Related]
2. Surface energy and wettability of van der Waals structures. Annamalai M; Gopinadhan K; Han SA; Saha S; Park HJ; Cho EB; Kumar B; Patra A; Kim SW; Venkatesan T Nanoscale; 2016 Mar; 8(10):5764-70. PubMed ID: 26910437 [TBL] [Abstract][Full Text] [Related]
3. Van der Waals Epitaxial Growth of Two-Dimensional Single-Crystalline GaSe Domains on Graphene. Li X; Basile L; Huang B; Ma C; Lee J; Vlassiouk IV; Puretzky AA; Lin MW; Yoon M; Chi M; Idrobo JC; Rouleau CM; Sumpter BG; Geohegan DB; Xiao K ACS Nano; 2015 Aug; 9(8):8078-88. PubMed ID: 26202730 [TBL] [Abstract][Full Text] [Related]
4. Atomically Sharp Interface in an h-BN-epitaxial graphene van der Waals Heterostructure. Sediri H; Pierucci D; Hajlaoui M; Henck H; Patriarche G; Dappe YJ; Yuan S; Toury B; Belkhou R; Silly MG; Sirotti F; Boutchich M; Ouerghi A Sci Rep; 2015 Nov; 5():16465. PubMed ID: 26585245 [TBL] [Abstract][Full Text] [Related]
5. Indirect Interlayer Bonding in Graphene-Topological Insulator van der Waals Heterostructure: Giant Spin-Orbit Splitting of the Graphene Dirac States. Rajput S; Li YY; Weinert M; Li L ACS Nano; 2016 Sep; 10(9):8450-6. PubMed ID: 27617796 [TBL] [Abstract][Full Text] [Related]
6. On the hydrogen evolution reaction activity of graphene-hBN van der Waals heterostructures. Bawari S; Kaley NM; Pal S; Vineesh TV; Ghosh S; Mondal J; Narayanan TN Phys Chem Chem Phys; 2018 Jun; 20(22):15007-15014. PubMed ID: 29594282 [TBL] [Abstract][Full Text] [Related]
7. Fluorinated graphene and hexagonal boron nitride as ALD seed layers for graphene-based van der Waals heterostructures. Guo H; Liu Y; Xu Y; Meng N; Wang H; Hasan T; Wang X; Luo J; Yu B Nanotechnology; 2014 Sep; 25(35):355202. PubMed ID: 25116064 [TBL] [Abstract][Full Text] [Related]
8. London-van der Waals Force Field of a Chemically Patterned Surface To Enable Selective Adhesion. Jaiswal RP; Beaudoin SP Langmuir; 2019 Jan; 35(1):86-94. PubMed ID: 30540192 [TBL] [Abstract][Full Text] [Related]
9. The impact of substrate surface defects on the properties of two-dimensional van der Waals heterostructures. Kim SY; Kim JH; Lee S; Kwak J; Jo Y; Yoon E; Lee GD; Lee Z; Kwon SY Nanoscale; 2018 Oct; 10(40):19212-19219. PubMed ID: 30303224 [TBL] [Abstract][Full Text] [Related]
10. Coincident-site lattice matching during van der Waals epitaxy. Boschker JE; Galves LA; Flissikowski T; Lopes JM; Riechert H; Calarco R Sci Rep; 2015 Dec; 5():18079. PubMed ID: 26658715 [TBL] [Abstract][Full Text] [Related]
11. Toward a Mechanistic Understanding of Vertical Growth of van der Waals Stacked 2D Materials: A Multiscale Model and Experiments. Ye H; Zhou J; Er D; Price CC; Yu Z; Liu Y; Lowengrub J; Lou J; Liu Z; Shenoy VB ACS Nano; 2017 Dec; 11(12):12780-12788. PubMed ID: 29206441 [TBL] [Abstract][Full Text] [Related]
12. Proximity Engineering of the van der Waals Interaction in Multilayered Graphene. Kim S; Park J; Duong DL; Cho S; Kim SW; Yang H ACS Appl Mater Interfaces; 2019 Nov; 11(45):42528-42533. PubMed ID: 31657203 [TBL] [Abstract][Full Text] [Related]
13. Modulation of substrate van der Waals forces using varying thicknesses of polymer overlayers. Wang H; Evans D; Voelcker NH; Griesser HJ; Meagher L J Colloid Interface Sci; 2020 Nov; 580():690-699. PubMed ID: 32712475 [TBL] [Abstract][Full Text] [Related]
14. Probing van der Waals interactions at two-dimensional heterointerfaces. Li B; Yin J; Liu X; Wu H; Li J; Li X; Guo W Nat Nanotechnol; 2019 Jun; 14(6):567-572. PubMed ID: 30911164 [TBL] [Abstract][Full Text] [Related]
15. Van der Waals Epitaxy of Two-Dimensional MoS2-Graphene Heterostructures in Ultrahigh Vacuum. Miwa JA; Dendzik M; Grønborg SS; Bianchi M; Lauritsen JV; Hofmann P; Ulstrup S ACS Nano; 2015 Jun; 9(6):6502-10. PubMed ID: 26039108 [TBL] [Abstract][Full Text] [Related]
16. van der Waals Layered Materials: Opportunities and Challenges. Duong DL; Yun SJ; Lee YH ACS Nano; 2017 Dec; 11(12):11803-11830. PubMed ID: 29219304 [TBL] [Abstract][Full Text] [Related]
17. Constructing van der Waals heterostructures by dry-transfer assembly for novel optoelectronic device. Li H; Xiong X; Hui F; Yang D; Jiang J; Feng W; Han J; Duan J; Wang Z; Sun L Nanotechnology; 2022 Aug; 33(46):. PubMed ID: 35313295 [TBL] [Abstract][Full Text] [Related]
18. Layer-Controlled Chemical Vapor Deposition Growth of MoS2 Vertical Heterostructures via van der Waals Epitaxy. Samad L; Bladow SM; Ding Q; Zhuo J; Jacobberger RM; Arnold MS; Jin S ACS Nano; 2016 Jul; 10(7):7039-46. PubMed ID: 27373305 [TBL] [Abstract][Full Text] [Related]
19. Tunable band gaps in graphene/GaN van der Waals heterostructures. Huang L; Yue Q; Kang J; Li Y; Li J J Phys Condens Matter; 2014 Jul; 26(29):295304. PubMed ID: 24981081 [TBL] [Abstract][Full Text] [Related]
20. On the van der Waals Epitaxy of Homo-/Heterostructures of Transition Metal Dichalcogenides. Mortelmans W; Nalin Mehta A; Balaji Y; Sergeant S; Meng R; Houssa M; De Gendt S; Heyns M; Merckling C ACS Appl Mater Interfaces; 2020 Jun; 12(24):27508-27517. PubMed ID: 32447952 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]