BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 30244581)

  • 1. Direct Measurement of the Magnitude of the van der Waals Interaction of Single and Multilayer Graphene.
    Chiou YC; Olukan TA; Almahri MA; Apostoleris H; Chiu CH; Lai CY; Lu JY; Santos S; Almansouri I; Chiesa M
    Langmuir; 2018 Oct; 34(41):12335-12343. PubMed ID: 30244581
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Surface energy and wettability of van der Waals structures.
    Annamalai M; Gopinadhan K; Han SA; Saha S; Park HJ; Cho EB; Kumar B; Patra A; Kim SW; Venkatesan T
    Nanoscale; 2016 Mar; 8(10):5764-70. PubMed ID: 26910437
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Van der Waals Epitaxial Growth of Two-Dimensional Single-Crystalline GaSe Domains on Graphene.
    Li X; Basile L; Huang B; Ma C; Lee J; Vlassiouk IV; Puretzky AA; Lin MW; Yoon M; Chi M; Idrobo JC; Rouleau CM; Sumpter BG; Geohegan DB; Xiao K
    ACS Nano; 2015 Aug; 9(8):8078-88. PubMed ID: 26202730
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Atomically Sharp Interface in an h-BN-epitaxial graphene van der Waals Heterostructure.
    Sediri H; Pierucci D; Hajlaoui M; Henck H; Patriarche G; Dappe YJ; Yuan S; Toury B; Belkhou R; Silly MG; Sirotti F; Boutchich M; Ouerghi A
    Sci Rep; 2015 Nov; 5():16465. PubMed ID: 26585245
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Indirect Interlayer Bonding in Graphene-Topological Insulator van der Waals Heterostructure: Giant Spin-Orbit Splitting of the Graphene Dirac States.
    Rajput S; Li YY; Weinert M; Li L
    ACS Nano; 2016 Sep; 10(9):8450-6. PubMed ID: 27617796
    [TBL] [Abstract][Full Text] [Related]  

  • 6. On the hydrogen evolution reaction activity of graphene-hBN van der Waals heterostructures.
    Bawari S; Kaley NM; Pal S; Vineesh TV; Ghosh S; Mondal J; Narayanan TN
    Phys Chem Chem Phys; 2018 Jun; 20(22):15007-15014. PubMed ID: 29594282
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fluorinated graphene and hexagonal boron nitride as ALD seed layers for graphene-based van der Waals heterostructures.
    Guo H; Liu Y; Xu Y; Meng N; Wang H; Hasan T; Wang X; Luo J; Yu B
    Nanotechnology; 2014 Sep; 25(35):355202. PubMed ID: 25116064
    [TBL] [Abstract][Full Text] [Related]  

  • 8. London-van der Waals Force Field of a Chemically Patterned Surface To Enable Selective Adhesion.
    Jaiswal RP; Beaudoin SP
    Langmuir; 2019 Jan; 35(1):86-94. PubMed ID: 30540192
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The impact of substrate surface defects on the properties of two-dimensional van der Waals heterostructures.
    Kim SY; Kim JH; Lee S; Kwak J; Jo Y; Yoon E; Lee GD; Lee Z; Kwon SY
    Nanoscale; 2018 Oct; 10(40):19212-19219. PubMed ID: 30303224
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Coincident-site lattice matching during van der Waals epitaxy.
    Boschker JE; Galves LA; Flissikowski T; Lopes JM; Riechert H; Calarco R
    Sci Rep; 2015 Dec; 5():18079. PubMed ID: 26658715
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Toward a Mechanistic Understanding of Vertical Growth of van der Waals Stacked 2D Materials: A Multiscale Model and Experiments.
    Ye H; Zhou J; Er D; Price CC; Yu Z; Liu Y; Lowengrub J; Lou J; Liu Z; Shenoy VB
    ACS Nano; 2017 Dec; 11(12):12780-12788. PubMed ID: 29206441
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Proximity Engineering of the van der Waals Interaction in Multilayered Graphene.
    Kim S; Park J; Duong DL; Cho S; Kim SW; Yang H
    ACS Appl Mater Interfaces; 2019 Nov; 11(45):42528-42533. PubMed ID: 31657203
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modulation of substrate van der Waals forces using varying thicknesses of polymer overlayers.
    Wang H; Evans D; Voelcker NH; Griesser HJ; Meagher L
    J Colloid Interface Sci; 2020 Nov; 580():690-699. PubMed ID: 32712475
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Probing van der Waals interactions at two-dimensional heterointerfaces.
    Li B; Yin J; Liu X; Wu H; Li J; Li X; Guo W
    Nat Nanotechnol; 2019 Jun; 14(6):567-572. PubMed ID: 30911164
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Van der Waals Epitaxy of Two-Dimensional MoS2-Graphene Heterostructures in Ultrahigh Vacuum.
    Miwa JA; Dendzik M; Grønborg SS; Bianchi M; Lauritsen JV; Hofmann P; Ulstrup S
    ACS Nano; 2015 Jun; 9(6):6502-10. PubMed ID: 26039108
    [TBL] [Abstract][Full Text] [Related]  

  • 16. van der Waals Layered Materials: Opportunities and Challenges.
    Duong DL; Yun SJ; Lee YH
    ACS Nano; 2017 Dec; 11(12):11803-11830. PubMed ID: 29219304
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Constructing van der Waals heterostructures by dry-transfer assembly for novel optoelectronic device.
    Li H; Xiong X; Hui F; Yang D; Jiang J; Feng W; Han J; Duan J; Wang Z; Sun L
    Nanotechnology; 2022 Aug; 33(46):. PubMed ID: 35313295
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Layer-Controlled Chemical Vapor Deposition Growth of MoS2 Vertical Heterostructures via van der Waals Epitaxy.
    Samad L; Bladow SM; Ding Q; Zhuo J; Jacobberger RM; Arnold MS; Jin S
    ACS Nano; 2016 Jul; 10(7):7039-46. PubMed ID: 27373305
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tunable band gaps in graphene/GaN van der Waals heterostructures.
    Huang L; Yue Q; Kang J; Li Y; Li J
    J Phys Condens Matter; 2014 Jul; 26(29):295304. PubMed ID: 24981081
    [TBL] [Abstract][Full Text] [Related]  

  • 20. On the van der Waals Epitaxy of Homo-/Heterostructures of Transition Metal Dichalcogenides.
    Mortelmans W; Nalin Mehta A; Balaji Y; Sergeant S; Meng R; Houssa M; De Gendt S; Heyns M; Merckling C
    ACS Appl Mater Interfaces; 2020 Jun; 12(24):27508-27517. PubMed ID: 32447952
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.