These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 30244737)

  • 1. Soot reduction by addition of dimethyl carbonate in normal and inverse ethylene diffusion flames: Nanostructural evidence.
    Paladpokkrong C; Liu D; Ying Y; Wang W; Zhang R
    J Environ Sci (China); 2018 Oct; 72():107-117. PubMed ID: 30244737
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thermally induced variations in the nanostructure and reactivity of soot particles emitted from a diesel engine.
    Liu Y; Fan C; Wang X; Liu F; Chen H
    Chemosphere; 2022 Jan; 286(Pt 2):131712. PubMed ID: 34333188
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Formation and Evolution of Soot in Ethylene Inverse Diffusion Flames in Ozone Atmosphere.
    Ying Y; Liu D
    Nanomaterials (Basel); 2023 Feb; 13(5):. PubMed ID: 36903694
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Impacts of Alternative Fuels on Morphological and Nanostructural Characteristics of Soot Emissions from an Aviation Piston Engine.
    Chen L; Hu X; Wang J; Yu Y
    Environ Sci Technol; 2019 Apr; 53(8):4667-4674. PubMed ID: 30908027
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Soot Morphology and Nanostructure Differences between Chinese Aviation Kerosene and Algae-Based Aviation Biofuel in Free Jet Laminar Diffusion Flames.
    Chang D; Li J; Yang Y; Gan Z
    ACS Omega; 2022 Apr; 7(14):11560-11569. PubMed ID: 35449979
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Impacts of Fuel Stage Ratio on the Morphological and Nanostructural Characteristics of Soot Emissions from a Twin Annular Premixing Swirler Combustor.
    Chen L; Cui B; Zhang C; Hu X; Wang Y; Li G; Chang L; Liu L
    Environ Sci Technol; 2024 Jun; 58(24):10558-10566. PubMed ID: 38833713
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nanostructure and reactivity of soot particles from open burning of household solid waste.
    He JJ; Hu QX; Jiang MN; Huang QX
    Chemosphere; 2021 Apr; 269():129395. PubMed ID: 33385669
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Impact of carbon chain length of alcohols on the physicochemical properties and reactivity of exhaust soot.
    Pan M; Wang Y; Wei J; Huang H; Zhou X
    Sci Total Environ; 2021 Dec; 799():149434. PubMed ID: 34371412
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Properties and oxidation of exhaust particulates from dual fuel combustion: A comparative study of premixed gasoline, n-butanol and their blends.
    Wang X; Wang Y; Bai Y; Duan Q
    Environ Pollut; 2021 Feb; 271():116391. PubMed ID: 33385888
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of ammonia on morphological characteristics and nanostructure of soot in the combustion of diesel surrogate fuels.
    Zhang K; Xu Y; Li Y; Liu Y; Wang B; Wang H; Ma J; Cheng X
    J Hazard Mater; 2023 Mar; 445():130645. PubMed ID: 37056027
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of metallic lubricant additives on morphology, nanostructure, graphitization degree and oxidation reactivity of diesel particles.
    Wang Y; Yang H; Liang X; Song H; Tao Z
    Chemosphere; 2022 Nov; 306():135588. PubMed ID: 35803373
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Investigation of the photochemical reactivity of soot particles derived from biofuels toward NO2. A kinetic and product study.
    Romanías MN; Dagaut P; Bedjanian Y; Andrade-Eiroa A; Shahla R; Emmanouil KS; Papadimitriou VC; Spyros A
    J Phys Chem A; 2015 Mar; 119(10):2006-15. PubMed ID: 25686032
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Soot particle morphology and nanostructure with oxygenated fuels: A comparative study into cold-start and hot-start operation.
    Verma P; Jafari M; Zare A; Pickering E; Guo Y; Osuagwu CG; Stevanovic S; Brown R; Ristovski Z
    Environ Pollut; 2021 Apr; 275():116592. PubMed ID: 33582631
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of lubricating base oil on the oxidation behavior of diesel exhaust soot.
    Wang Y; Yang H; Liang X; Song H; Tao Z
    Sci Total Environ; 2023 Feb; 858(Pt 3):160009. PubMed ID: 36368398
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effective reduction on flame soot via plasma coupled with carbon dioxide.
    Qi D; Chen M; Yang K; Li T; Ying Y; Liu D
    J Hazard Mater; 2024 Mar; 466():133669. PubMed ID: 38310061
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantitative Image Analysis of Carbon Nanostructure of Particles Produced from Combustion Process.
    Choi SC; Park SH
    J Nanosci Nanotechnol; 2018 Mar; 18(3):2148-2151. PubMed ID: 29448733
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Variation of diesel soot characteristics by different types and blends of biodiesel in a laboratory combustion chamber.
    Omidvarborna H; Kumar A; Kim DS
    Sci Total Environ; 2016 Feb; 544():450-9. PubMed ID: 26657390
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Investigation on the gaseous and particulate emissions of a compression ignition engine fueled with diesel-dimethyl carbonate blends.
    Cheung CS; Zhu R; Huang Z
    Sci Total Environ; 2011 Jan; 409(3):523-9. PubMed ID: 21081245
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nanostructure Transition of Young Soot Aggregates to Mature Soot Aggregates in Diluted Diffusion Flames.
    Davis J; Molnar E; Novosselov I
    Carbon N Y; 2020 Apr; 159():255-265. PubMed ID: 32863394
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of operating conditions on the chemical composition, morphology, and nano-structure of particulate emissions in a light hydrocarbon premixed charge compression ignition (PCCI) engine.
    Chen H; Wang X; Pan Z
    Sci Total Environ; 2021 Jan; 750():141716. PubMed ID: 32882499
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.