These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
131 related articles for article (PubMed ID: 30245131)
1. Quantitative proteome analysis identifies MAP2K6 as potential regulator of LIFR-induced radioresistance in nasopharyngeal carcinoma cells. Li Z; Fu J; Li N; Shen L Biochem Biophys Res Commun; 2018 Oct; 505(1):274-281. PubMed ID: 30245131 [TBL] [Abstract][Full Text] [Related]
2. MiR-23a sensitizes nasopharyngeal carcinoma to irradiation by targeting IL-8/Stat3 pathway. Qu JQ; Yi HM; Ye X; Li LN; Zhu JF; Xiao T; Yuan L; Li JY; Wang YY; Feng J; He QY; Lu SS; Yi H; Xiao ZQ Oncotarget; 2015 Sep; 6(29):28341-56. PubMed ID: 26314966 [TBL] [Abstract][Full Text] [Related]
3. Identification of heat shock protein 27 as a radioresistance-related protein in nasopharyngeal carcinoma cells. Zhang B; Qu JQ; Xiao L; Yi H; Zhang PF; Li MY; Hu R; Wan XX; He QY; Li JH; Ye X; Xiao ZQ; Feng XP J Cancer Res Clin Oncol; 2012 Dec; 138(12):2117-25. PubMed ID: 22847231 [TBL] [Abstract][Full Text] [Related]
4. Salinomycin overcomes radioresistance in nasopharyngeal carcinoma cells by inhibiting Nrf2 level and promoting ROS generation. Zhang G; Wang W; Yao C; Ren J; Zhang S; Han M Biomed Pharmacother; 2017 Jul; 91():147-154. PubMed ID: 28453992 [TBL] [Abstract][Full Text] [Related]
6. PARP-1 promotes autophagy via the AMPK/mTOR pathway in CNE-2 human nasopharyngeal carcinoma cells following ionizing radiation, while inhibition of autophagy contributes to the radiation sensitization of CNE-2 cells. Chen ZT; Zhao W; Qu S; Li L; Lu XD; Su F; Liang ZG; Guo SY; Zhu XD Mol Med Rep; 2015 Aug; 12(2):1868-76. PubMed ID: 25872765 [TBL] [Abstract][Full Text] [Related]
7. lncRNA CASC19 Contributes to Radioresistance of Nasopharyngeal Carcinoma by Promoting Autophagy via AMPK-mTOR Pathway. Liu H; Zheng W; Chen Q; Zhou Y; Pan Y; Zhang J; Bai Y; Shao C Int J Mol Sci; 2021 Jan; 22(3):. PubMed ID: 33573349 [TBL] [Abstract][Full Text] [Related]
8. Identification of biomarkers for predicting nasopharyngeal carcinoma response to radiotherapy by proteomics. Feng XP; Yi H; Li MY; Li XH; Yi B; Zhang PF; Li C; Peng F; Tang CE; Li JL; Chen ZC; Xiao ZQ Cancer Res; 2010 May; 70(9):3450-62. PubMed ID: 20406978 [TBL] [Abstract][Full Text] [Related]
9. Analysis of the differential secretome of nasopharyngeal carcinoma cell lines CNE-2R and CNE-2. Chen ZT; Li L; Guo Y; Qu S; Zhao W; Chen H; Su F; Yin J; Mo QY; Zhu XD Oncol Rep; 2015 Nov; 34(5):2477-88. PubMed ID: 26352878 [TBL] [Abstract][Full Text] [Related]
10. Quantitative Proteomic Analysis Identifies MAPK15 as a Potential Regulator of Radioresistance in Nasopharyngeal Carcinoma Cells. Li Z; Li N; Shen L; Fu J Front Oncol; 2018; 8():548. PubMed ID: 30524968 [TBL] [Abstract][Full Text] [Related]
11. The Homologous Recombination Repair Pathway is Associated with Resistance to Radiotherapy in Nasopharyngeal Carcinoma. Wang Z; Zuo W; Zeng Q; Li Y; Lu T; Bu Y; Hu G Int J Biol Sci; 2020; 16(3):408-419. PubMed ID: 32015678 [TBL] [Abstract][Full Text] [Related]
12. Identification of ERp29 as a biomarker for predicting nasopharyngeal carcinoma response to radiotherapy. Wu P; Zhang H; Qi L; Tang Q; Tang Y; Xie Z; Lv Y; Zhao S; Jiang W Oncol Rep; 2012 Apr; 27(4):987-94. PubMed ID: 22160175 [TBL] [Abstract][Full Text] [Related]
13. Knockdown of Annexin A1 Enhances Radioresistance and Inhibits Apoptosis in Nasopharyngeal Carcinoma. Liao L; Yan WJ; Tian CM; Li MY; Tian YQ; Zeng GQ Technol Cancer Res Treat; 2018 Jan; 17():1533034617750309. PubMed ID: 29357787 [TBL] [Abstract][Full Text] [Related]
14. The effect on radioresistance of manganese superoxide dismutase in nasopharyngeal carcinoma. Qu Y; Zhang H; Zhao S; Hong J; Tang C Oncol Rep; 2010 Apr; 23(4):1005-11. PubMed ID: 20204285 [TBL] [Abstract][Full Text] [Related]
15. Overexpression of β-Catenin Decreases the Radiosensitivity of Human Nasopharyngeal Carcinoma CNE-2 Cells. He H; Lin K; Su Y; Lin S; Zou C; Pan J; Zhou Y; Chen C Cell Physiol Biochem; 2018; 50(5):1929-1944. PubMed ID: 30396174 [TBL] [Abstract][Full Text] [Related]
16. SHP-1 overexpression increases the radioresistance of NPC cells by enhancing DSB repair, increasing S phase arrest and decreasing cell apoptosis. Pan X; Mou J; Liu S; Sun Z; Meng R; Zhou Z; Wu G; Peng G Oncol Rep; 2015 Jun; 33(6):2999-3005. PubMed ID: 25962492 [TBL] [Abstract][Full Text] [Related]
18. Integrated analysis of differential miRNA and mRNA expression profiles in human radioresistant and radiosensitive nasopharyngeal carcinoma cells. Li XH; Qu JQ; Yi H; Zhang PF; Yi HM; Wan XX; He QY; Ye X; Yuan L; Zhu JF; Li JY; Xiao ZQ PLoS One; 2014; 9(1):e87767. PubMed ID: 24498188 [TBL] [Abstract][Full Text] [Related]
19. MicroRNA-19b-3p regulates nasopharyngeal carcinoma radiosensitivity by targeting TNFAIP3/NF-κB axis. Huang T; Yin L; Wu J; Gu JJ; Wu JZ; Chen D; Yu HL; Ding K; Zhang N; Du MY; Qian LX; Lu ZW; He X J Exp Clin Cancer Res; 2016 Dec; 35(1):188. PubMed ID: 27919278 [TBL] [Abstract][Full Text] [Related]
20. Genome-wide analyses of long noncoding RNA expression profiles correlated with radioresistance in nasopharyngeal carcinoma via next-generation deep sequencing. Li G; Liu Y; Liu C; Su Z; Ren S; Wang Y; Deng T; Huang D; Tian Y; Qiu Y BMC Cancer; 2016 Sep; 16(1):719. PubMed ID: 27599611 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]