These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
600 related articles for article (PubMed ID: 30245295)
1. Design and characterization of immobilized biocatalyst with lipase activity onto magnetic magnesium spinel nanoparticles: A novel platform for biocatalysis. Romero CM; Spuches FC; Morales AH; Perotti NI; Navarro MC; Gómez MI Colloids Surf B Biointerfaces; 2018 Dec; 172():699-707. PubMed ID: 30245295 [TBL] [Abstract][Full Text] [Related]
2. A robust nanobiocatalyst based on high performance lipase immobilized to novel synthesised poly(o-toluidine) functionalized magnetic nanocomposite: Sterling stability and application. Asmat S; Husain Q Mater Sci Eng C Mater Biol Appl; 2019 Jun; 99():25-36. PubMed ID: 30889698 [TBL] [Abstract][Full Text] [Related]
3. Preparation of core-shell magnetic polydopamine/alginate biocomposite for Candida rugosa lipase immobilization. Hou C; Qi Z; Zhu H Colloids Surf B Biointerfaces; 2015 Apr; 128():544-551. PubMed ID: 25784302 [TBL] [Abstract][Full Text] [Related]
4. Immobilization of Candida antarctica Lipase B on Magnetic Poly(Urea-Urethane) Nanoparticles. Chiaradia V; Soares NS; Valério A; de Oliveira D; Araújo PH; Sayer C Appl Biochem Biotechnol; 2016 Oct; 180(3):558-575. PubMed ID: 27184256 [TBL] [Abstract][Full Text] [Related]
5. Design of biocompatible immobilized Candida rugosa lipase with potential application in food industry. Trbojević Ivić J; Veličković D; Dimitrijević A; Bezbradica D; Dragačević V; Gavrović Jankulović M; Milosavić N J Sci Food Agric; 2016 Sep; 96(12):4281-7. PubMed ID: 26801832 [TBL] [Abstract][Full Text] [Related]
6. Calix[4]arene tetracarboxylic acid-treated lipase immobilized onto metal-organic framework: Biocatalyst for ester hydrolysis and kinetic resolution. Ozyilmaz E; Ascioglu S; Yilmaz M Int J Biol Macromol; 2021 Apr; 175():79-86. PubMed ID: 33548316 [TBL] [Abstract][Full Text] [Related]
7. Candida rugosa lipase immobilization on hydrophilic charged gold nanoparticles as promising biocatalysts: Activity and stability investigations. Venditti I; Palocci C; Chronopoulou L; Fratoddi I; Fontana L; Diociaiuti M; Russo MV Colloids Surf B Biointerfaces; 2015 Jul; 131():93-101. PubMed ID: 25969418 [TBL] [Abstract][Full Text] [Related]
8. Taguchi design-assisted immobilization of Candida rugosa lipase onto a ternary alginate/nanocellulose/montmorillonite composite: Physicochemical characterization, thermal stability and reusability studies. Mohd Hussin FNN; Attan N; Wahab RA Enzyme Microb Technol; 2020 May; 136():109506. PubMed ID: 32331714 [TBL] [Abstract][Full Text] [Related]
9. Covalent immobilization of Candida rugosa lipase on aldehyde functionalized hydrophobic support and the application for synthesis of oleic acid ester. Temoçin Z J Biomater Sci Polym Ed; 2013; 24(14):1618-35. PubMed ID: 23574345 [TBL] [Abstract][Full Text] [Related]
10. Preparation of magnetic Fe3O4@SiO2 nanoparticles for immobilization of lipase. Liu W; Zhou F; Zhang XY; Li Y; Wang XY; Xu XM; Zhang YW J Nanosci Nanotechnol; 2014 Apr; 14(4):3068-72. PubMed ID: 24734736 [TBL] [Abstract][Full Text] [Related]
11. Immobilization of Lipase A from Monteiro RRC; Lima PJM; Pinheiro BB; Freire TM; Dutra LMU; Fechine PBA; Gonçalves LRB; de Souza MCM; Dos Santos JCS; Fernandez-Lafuente R Int J Mol Sci; 2019 Aug; 20(16):. PubMed ID: 31426510 [TBL] [Abstract][Full Text] [Related]
12. Covalent immobilization of porcine pancreatic lipase on carboxyl-activated magnetic nanoparticles: characterization and application for enzymatic inhibition assays. Zhu YT; Ren XY; Liu YM; Wei Y; Qing LS; Liao X Mater Sci Eng C Mater Biol Appl; 2014 May; 38():278-85. PubMed ID: 24656379 [TBL] [Abstract][Full Text] [Related]
13. Preparation Fe3O4@chitosan magnetic particles for covalent immobilization of lipase from Thermomyces lanuginosus. Wang XY; Jiang XP; Li Y; Zeng S; Zhang YW Int J Biol Macromol; 2015 Apr; 75():44-50. PubMed ID: 25603148 [TBL] [Abstract][Full Text] [Related]
14. Synthesis of fibrous and non-fibrous mesoporous silica magnetic yolk-shell microspheres as recyclable supports for immobilization of Candida rugosa lipase. Ali Z; Tian L; Zhang B; Ali N; Khan M; Zhang Q Enzyme Microb Technol; 2017 Aug; 103():42-52. PubMed ID: 28554384 [TBL] [Abstract][Full Text] [Related]
15. Collagen-Immobilized Lipases Show Good Activity and Reusability for Butyl Butyrate Synthesis. Dewei S; Min C; Haiming C Appl Biochem Biotechnol; 2016 Nov; 180(5):826-840. PubMed ID: 27188972 [TBL] [Abstract][Full Text] [Related]
16. Metal-Organic Frameworks Conjugated Lipase with Enhanced Bio-catalytic Activity and Stability. Zou B; Zhang L; Xia J; Wang P; Yan Y; Wang X; Adesanya IO Appl Biochem Biotechnol; 2020 Sep; 192(1):132-145. PubMed ID: 32323142 [TBL] [Abstract][Full Text] [Related]
17. A facile enzymatic synthesis of geranyl propionate by physically adsorbed Candida rugosa lipase onto multi-walled carbon nanotubes. Mohamad NR; Buang NA; Mahat NA; Lok YY; Huyop F; Aboul-Enein HY; Abdul Wahab R Enzyme Microb Technol; 2015 May; 72():49-55. PubMed ID: 25837507 [TBL] [Abstract][Full Text] [Related]
18. Ternary biogenic silica/magnetite/graphene oxide composite for the hyperactivation of Candida rugosa lipase in the esterification production of ethyl valerate. Jacob AG; Wahab RA; Mahat NA Enzyme Microb Technol; 2021 Aug; 148():109807. PubMed ID: 34116744 [TBL] [Abstract][Full Text] [Related]
19. Immobilization of Candida rugosa lipase on poly(3-hydroxybutyrate-co-hydroxyvalerate): a new eco-friendly support. Cabrera-Padilla RY; Lisboa MC; Fricks AT; Franceschi E; Lima AS; Silva DP; Soares CM J Ind Microbiol Biotechnol; 2012 Feb; 39(2):289-98. PubMed ID: 21870100 [TBL] [Abstract][Full Text] [Related]
20. Biochemical properties of free and immobilized Candida rugosa lipase onto Al2O3: a comparative study. Yeşiloğlu Y; Şit L Artif Cells Blood Substit Immobil Biotechnol; 2011 Aug; 39(4):247-51. PubMed ID: 21117873 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]