BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

609 related articles for article (PubMed ID: 30245385)

  • 1. Bioinstructive microparticles for self-assembly of mesenchymal stem Cell-3D tumor spheroids.
    Ferreira LP; Gaspar VM; Mano JF
    Biomaterials; 2018 Dec; 185():155-173. PubMed ID: 30245385
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chitosan-hyaluronan based 3D co-culture platform for studying the crosstalk of lung cancer cells and mesenchymal stem cells.
    Han HW; Hsu SH
    Acta Biomater; 2016 Sep; 42():157-167. PubMed ID: 27296841
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bioimaging of Mesenchymal Stem Cells Spatial Distribution and Interactions with 3D In Vitro Tumor Spheroids.
    Ferreira LP; Gaspar VM; Mano JF
    Methods Mol Biol; 2021; 2269():49-61. PubMed ID: 33687671
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In-air production of 3D co-culture tumor spheroid hydrogels for expedited drug screening.
    Antunes J; Gaspar VM; Ferreira L; Monteiro M; Henrique R; Jerónimo C; Mano JF
    Acta Biomater; 2019 Aug; 94():392-409. PubMed ID: 31200118
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Screening of dual chemo-photothermal cellular nanotherapies in organotypic breast cancer 3D spheroids.
    Ferreira LP; Gaspar VM; Monteiro MV; Freitas B; Silva NJO; Mano JF
    J Control Release; 2021 Mar; 331():85-102. PubMed ID: 33388341
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spheroid formation of mesenchymal stem cells on chitosan and chitosan-hyaluronan membranes.
    Huang GS; Dai LG; Yen BL; Hsu SH
    Biomaterials; 2011 Oct; 32(29):6929-45. PubMed ID: 21762982
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optimization of liquid overlay technique to formulate heterogenic 3D co-cultures models.
    Costa EC; Gaspar VM; Coutinho P; Correia IJ
    Biotechnol Bioeng; 2014 Aug; 111(8):1672-85. PubMed ID: 24615162
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Indirect co-culture of lung carcinoma cells with hyperthermia-treated mesenchymal stem cells influences tumor spheroid growth in a collagen-based 3-dimensional microfluidic model.
    Dhiman N; Shagaghi N; Bhave M; Sumer H; Kingshott P; Rath SN
    Cytotherapy; 2021 Jan; 23(1):25-36. PubMed ID: 32771259
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hydrogel 3D in vitro tumor models for screening cell aggregation mediated drug response.
    Monteiro MV; Gaspar VM; Ferreira LP; Mano JF
    Biomater Sci; 2020 Mar; 8(7):1855-1864. PubMed ID: 32091033
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Acquisition of epithelial-mesenchymal transition and cancer stem-like phenotypes within chitosan-hyaluronan membrane-derived 3D tumor spheroids.
    Huang YJ; Hsu SH
    Biomaterials; 2014 Dec; 35(38):10070-9. PubMed ID: 25282622
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A three-dimensional spheroidal cancer model based on PEG-fibrinogen hydrogel microspheres.
    Pradhan S; Clary JM; Seliktar D; Lipke EA
    Biomaterials; 2017 Jan; 115():141-154. PubMed ID: 27889665
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Design of spherically structured 3D in vitro tumor models -Advances and prospects.
    Ferreira LP; Gaspar VM; Mano JF
    Acta Biomater; 2018 Jul; 75():11-34. PubMed ID: 29803007
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Novel Stromal Fibroblast-Modulated 3D Tumor Spheroid Model for Studying Tumor-Stroma Interaction and Drug Discovery.
    Shao H; Moller M; Wang D; Ting A; Boulina M; Liu ZJ
    J Vis Exp; 2020 Feb; (156):. PubMed ID: 32176195
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Substrate-dependent modulation of 3D spheroid morphology self-assembled in mesenchymal stem cell-endothelial progenitor cell coculture.
    Hsu SH; Ho TT; Huang NC; Yao CL; Peng LH; Dai NT
    Biomaterials; 2014 Aug; 35(26):7295-307. PubMed ID: 24909102
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spheroid Coculture of Hematopoietic Stem/Progenitor Cells and Monolayer Expanded Mesenchymal Stem/Stromal Cells in Polydimethylsiloxane Microwells Modestly Improves In Vitro Hematopoietic Stem/Progenitor Cell Expansion.
    Futrega K; Atkinson K; Lott WB; Doran MR
    Tissue Eng Part C Methods; 2017 Apr; 23(4):200-218. PubMed ID: 28406754
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Changes in the secretome of tri-dimensional spheroid-cultured human mesenchymal stem cells in vitro by interleukin-1 priming.
    Redondo-Castro E; Cunningham CJ; Miller J; Brown H; Allan SM; Pinteaux E
    Stem Cell Res Ther; 2018 Jan; 9(1):11. PubMed ID: 29343288
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multicellular spheroid based on a triple co-culture: A novel 3D model to mimic pancreatic tumor complexity.
    Lazzari G; Nicolas V; Matsusaki M; Akashi M; Couvreur P; Mura S
    Acta Biomater; 2018 Sep; 78():296-307. PubMed ID: 30099198
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stratified 3D Microtumors as Organotypic Testing Platforms for Screening Pancreatic Cancer Therapies.
    Monteiro MV; Gaspar VM; Mendes L; Duarte IF; Mano JF
    Small Methods; 2021 May; 5(5):e2001207. PubMed ID: 34928079
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In vitro design of mesenchymal to epithelial transition of prostate cancer metastasis using 3D nanoclay bone-mimetic scaffolds.
    Molla MS; Katti DR; Katti KS
    J Tissue Eng Regen Med; 2018 Mar; 12(3):727-737. PubMed ID: 28603879
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Minimally Manipulative Method for the Expansion of Human Bone Marrow Mesenchymal Stem Cells to Treat Osseous Defects.
    Lawrence LM; Cottrill A; Valluri A; Marenzi G; Denning KL; Valluri J; Claudio PP; Day JB
    Int J Mol Sci; 2019 Jan; 20(3):. PubMed ID: 30708975
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 31.