These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
113 related articles for article (PubMed ID: 30245397)
1. Conformation impacts on the bioactivities of SMART analogues. Wu Y; Guan Q; Zheng D; Yan P; Feng D; Du J; Zhang J; Zuo D; Bao K; Zhang W Eur J Med Chem; 2018 Oct; 158():733-742. PubMed ID: 30245397 [TBL] [Abstract][Full Text] [Related]
2. Design, synthesis and biological evaluation of a novel tubulin inhibitor 7a3 targeting the colchicine binding site. Lai Q; Wang Y; Wang R; Lai W; Tang L; Tao Y; Liu Y; Zhang R; Huang L; Xiang H; Zeng S; Gou L; Chen H; Yao Y; Yang J Eur J Med Chem; 2018 Aug; 156():162-179. PubMed ID: 30006162 [TBL] [Abstract][Full Text] [Related]
3. Structure of a benzylidene derivative of 9(10H)-anthracenone in complex with tubulin provides a rationale for drug design. Cheng J; Wu Y; Wang Y; Wang C; Wang Y; Wu C; Zeng S; Yu Y; Chen Q Biochem Biophys Res Commun; 2018 Jan; 495(1):185-188. PubMed ID: 29102632 [TBL] [Abstract][Full Text] [Related]
4. Structure-Guided Design, Synthesis, and Biological Evaluation of (2-(1 Wang Q; Arnst KE; Wang Y; Kumar G; Ma D; White SW; Miller DD; Li W; Li W J Med Chem; 2019 Jul; 62(14):6734-6750. PubMed ID: 31251599 [TBL] [Abstract][Full Text] [Related]
5. Recent advances in trimethoxyphenyl (TMP) based tubulin inhibitors targeting the colchicine binding site. Li L; Jiang S; Li X; Liu Y; Su J; Chen J Eur J Med Chem; 2018 May; 151():482-494. PubMed ID: 29649743 [TBL] [Abstract][Full Text] [Related]
6. Design, Synthesis, and Biological Evaluation of 1-Methyl-1,4-dihydroindeno[1,2-c]pyrazole Analogues as Potential Anticancer Agents Targeting Tubulin Colchicine Binding Site. Liu YN; Wang JJ; Ji YT; Zhao GD; Tang LQ; Zhang CM; Guo XL; Liu ZP J Med Chem; 2016 Jun; 59(11):5341-55. PubMed ID: 27172319 [TBL] [Abstract][Full Text] [Related]
7. Design, synthesis and biological evaluation of (E)-3-(3,4-dihydroxyphenyl)acrylylpiperazine derivatives as a new class of tubulin polymerization inhibitors. Yin Y; Qiao F; Jiang LY; Wang SF; Sha S; Wu X; Lv PC; Zhu HL Bioorg Med Chem; 2014 Aug; 22(15):4285-92. PubMed ID: 24916028 [TBL] [Abstract][Full Text] [Related]
9. Molecular modelling studies on Arylthioindoles as potent inhibitors of tubulin polymerization. Coluccia A; Sabbadin D; Brancale A Eur J Med Chem; 2011 Aug; 46(8):3519-25. PubMed ID: 21621885 [TBL] [Abstract][Full Text] [Related]
10. IKP104-induced decay of tubulin: role of the A-ring binding site of colchicine. Chaudhuri AR; Tomita I; Mizuhashi F; Murata K; Potenziano JL; Ludueña RF Biochemistry; 1998 Dec; 37(49):17157-62. PubMed ID: 9860828 [TBL] [Abstract][Full Text] [Related]
11. Discovery of small molecule inhibitors that interact with γ-tubulin. Friesen DE; Barakat KH; Semenchenko V; Perez-Pineiro R; Fenske BW; Mane J; Wishart DS; Tuszynski JA Chem Biol Drug Des; 2012 May; 79(5):639-52. PubMed ID: 22268380 [TBL] [Abstract][Full Text] [Related]
12. Butterfly Structure: A Privileged Scaffold Targeting Tubulin-Colchicine Binding Site. Wang Y; Yao Y; Zhu HL; Duan Y Curr Top Med Chem; 2020; 20(17):1505-1508. PubMed ID: 32543362 [TBL] [Abstract][Full Text] [Related]
13. Combined Molecular Docking, 3D-QSAR, and Pharmacophore Model: Design of Novel Tubulin Polymerization Inhibitors by Binding to Colchicine-binding Site. Li DD; Qin YJ; Zhang X; Yin Y; Zhu HL; Zhao LG Chem Biol Drug Des; 2015 Oct; 86(4):731-45. PubMed ID: 25711282 [TBL] [Abstract][Full Text] [Related]
14. Tubulin inhibitors targeting the colchicine binding site: a perspective of privileged structures. Li W; Sun H; Xu S; Zhu Z; Xu J Future Med Chem; 2017 Oct; 9(15):1765-1794. PubMed ID: 28929799 [TBL] [Abstract][Full Text] [Related]
15. Discover 4β-NH-(6-aminoindole)-4-desoxy-podophyllotoxin with nanomolar-potency antitumor activity by improving the tubulin binding affinity on the basis of a potential binding site nearby colchicine domain. Zhao W; He L; Xiang TL; Tang YJ Eur J Med Chem; 2019 May; 170():73-86. PubMed ID: 30878833 [TBL] [Abstract][Full Text] [Related]
16. Microwave-assisted synthesis and biological evaluation of 3,4-diaryl maleic anhydride/N-substituted maleimide derivatives as combretastatin A-4 analogues. Guan Q; Zuo D; Jiang N; Qi H; Zhai Y; Bai Z; Feng D; Yang L; Jiang M; Bao K; Li C; Wu Y; Zhang W Bioorg Med Chem Lett; 2015 Feb; 25(3):631-4. PubMed ID: 25529737 [TBL] [Abstract][Full Text] [Related]
17. An overview of tubulin inhibitors that interact with the colchicine binding site. Lu Y; Chen J; Xiao M; Li W; Miller DD Pharm Res; 2012 Nov; 29(11):2943-71. PubMed ID: 22814904 [TBL] [Abstract][Full Text] [Related]
18. The tubulin colchicine domain: a molecular modeling perspective. Massarotti A; Coluccia A; Silvestri R; Sorba G; Brancale A ChemMedChem; 2012 Jan; 7(1):33-42. PubMed ID: 21990124 [TBL] [Abstract][Full Text] [Related]
19. -NH-dansyl isocolchicine exhibits a significantly improved tubulin-binding affinity and microtubule inhibition in comparison to isocolchicine by binding tubulin through its A and B rings. Das L; Datta AB; Gupta S; Poddar A; Sengupta S; Janik ME; Bhattacharyya B Biochemistry; 2005 Mar; 44(9):3249-58. PubMed ID: 15736935 [TBL] [Abstract][Full Text] [Related]
20. Structure of 4'-demethylepipodophyllotoxin in complex with tubulin provides a rationale for drug design. Niu L; Wang Y; Wang C; Wang Y; Jiang X; Ma L; Wu C; Yu Y; Chen Q Biochem Biophys Res Commun; 2017 Nov; 493(1):718-722. PubMed ID: 28864414 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]