These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

94 related articles for article (PubMed ID: 30245412)

  • 1. A deeper look at plant uptake of environmental contaminants using intelligent approaches.
    Bagheri M; Al-Jabery K; Wunsch DC; Burken JG
    Sci Total Environ; 2019 Feb; 651(Pt 1):561-569. PubMed ID: 30245412
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Examining plant uptake and translocation of emerging contaminants using machine learning: Implications to food security.
    Bagheri M; Al-Jabery K; Wunsch D; Burken JG
    Sci Total Environ; 2020 Jan; 698():133999. PubMed ID: 31499345
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Investigating plant uptake of organic contaminants through transpiration stream concentration factor and neural network models.
    Bagheri M; He X; Oustriere N; Liu W; Shi H; Limmer MA; Burken JG
    Sci Total Environ; 2021 Jan; 751():141418. PubMed ID: 33181989
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lipophilicity matters - A new look at experimental plant uptake data from literature.
    Schriever C; Lamshoeft M
    Sci Total Environ; 2020 Apr; 713():136667. PubMed ID: 32019028
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Deep learning models for predicting plant uptake of emerging contaminants by including the role of plant macromolecular compositions.
    Bagheri M; McKenney S; Ware JG; Farshforoush N
    J Hazard Mater; 2024 Dec; 480():135921. PubMed ID: 39305592
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation of a novel test design to determine uptake of chemicals by plant roots.
    Lamshoeft M; Gao Z; Resseler H; Schriever C; Sur R; Sweeney P; Webb S; Zillgens B; Reitz MU
    Sci Total Environ; 2018 Feb; 613-614():10-19. PubMed ID: 28892723
    [TBL] [Abstract][Full Text] [Related]  

  • 7. DCT-Yager FNN: a novel Yager-based fuzzy neural network with the discrete clustering technique.
    Singh A; Quek C; Cho SY
    IEEE Trans Neural Netw; 2008 Apr; 19(4):625-44. PubMed ID: 18390309
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantifying the Root-to-Shoot Transfer of 4,4'-Methylenedianiline Using Pressure Chamber and Intact Plant Methods.
    Wight J; Doucette W
    Environ Toxicol Chem; 2023 Mar; 42(3):655-662. PubMed ID: 36718782
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Study of root uptake and xylem translocation of cinmethylin and related compounds in detopped soybean roots using a pressure chamber technique.
    Hsu FC; Marxmiller RL; Yang AY
    Plant Physiol; 1990 Aug; 93(4):1573-8. PubMed ID: 16667658
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Design of double fuzzy clustering-driven context neural networks.
    Kim EH; Oh SK; Pedrycz W
    Neural Netw; 2018 Aug; 104():1-14. PubMed ID: 29689457
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Investigating differences in the root to shoot transfer and xylem sap solubility of organic compounds between zucchini, squash and soybean using a pressure chamber method.
    Garvin N; Doucette WJ; White JC
    Chemosphere; 2015 Jul; 130():98-102. PubMed ID: 25537866
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Research on air pollutant concentration prediction method based on self-adaptive neuro-fuzzy weighted extreme learning machine.
    Li Y; Jiang P; She Q; Lin G
    Environ Pollut; 2018 Oct; 241():1115-1127. PubMed ID: 30029320
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Travel Time Estimation Using Freeway Point Detector Data Based on Evolving Fuzzy Neural Inference System.
    Tang J; Zou Y; Ash J; Zhang S; Liu F; Wang Y
    PLoS One; 2016; 11(2):e0147263. PubMed ID: 26829639
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A New Efficient Hybrid Intelligent Model for Biodegradation Process of DMP with Fuzzy Wavelet Neural Networks.
    Huang M; Zhang T; Ruan J; Chen X
    Sci Rep; 2017 Jan; 7():41239. PubMed ID: 28120889
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Prediction of the fate of Hg and other contaminants in soil around a former chlor-alkali plant using Fuzzy Hierarchical Cross-Clustering approach.
    Frenţiu T; Ponta M; Sârbu C
    Chemosphere; 2015 Nov; 138():96-103. PubMed ID: 26057390
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Design of hybrid radial basis function neural networks (HRBFNNs) realized with the aid of hybridization of fuzzy clustering method (FCM) and polynomial neural networks (PNNs).
    Huang W; Oh SK; Pedrycz W
    Neural Netw; 2014 Dec; 60():166-81. PubMed ID: 25233483
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fuzzy classification by fuzzy labeled neural gas.
    Villmann T; Hammer B; Schleif F; Geweniger T; Herrmann W
    Neural Netw; 2006; 19(6-7):772-9. PubMed ID: 16815673
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Self-adaptive prediction of cloud resource demands using ensemble model and subtractive-fuzzy clustering based fuzzy neural network.
    Chen Z; Zhu Y; Di Y; Feng S
    Comput Intell Neurosci; 2015; 2015():919805. PubMed ID: 25691896
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An improved advertising CTR prediction approach based on the fuzzy deep neural network.
    Jiang Z; Gao S; Li M
    PLoS One; 2018; 13(5):e0190831. PubMed ID: 29727443
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A clustering-based fuzzy wavelet neural network model for short-term load forecasting.
    Kodogiannis VS; Amina M; Petrounias I
    Int J Neural Syst; 2013 Oct; 23(5):1350024. PubMed ID: 23924415
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.