BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

409 related articles for article (PubMed ID: 30245431)

  • 1. Optimal approximation of piecewise smooth functions using deep ReLU neural networks.
    Petersen P; Voigtlaender F
    Neural Netw; 2018 Dec; 108():296-330. PubMed ID: 30245431
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Deep ReLU neural networks in high-dimensional approximation.
    Dũng D; Nguyen VK
    Neural Netw; 2021 Oct; 142():619-635. PubMed ID: 34392126
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Error bounds for approximations with deep ReLU networks.
    Yarotsky D
    Neural Netw; 2017 Oct; 94():103-114. PubMed ID: 28756334
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Neural networks with ReLU powers need less depth.
    Cabanilla KIM; Mohammad RZ; Lope JEC
    Neural Netw; 2024 Apr; 172():106073. PubMed ID: 38159509
    [TBL] [Abstract][Full Text] [Related]  

  • 5. ReLU Networks Are Universal Approximators via Piecewise Linear or Constant Functions.
    Huang C
    Neural Comput; 2020 Nov; 32(11):2249-2278. PubMed ID: 32946706
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Low dimensional approximation and generalization of multivariate functions on smooth manifolds using deep ReLU neural networks.
    Labate D; Shi J
    Neural Netw; 2024 Jun; 174():106223. PubMed ID: 38458005
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Simultaneous approximation of a smooth function and its derivatives by deep neural networks with piecewise-polynomial activations.
    Belomestny D; Naumov A; Puchkin N; Samsonov S
    Neural Netw; 2023 Apr; 161():242-253. PubMed ID: 36774863
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Simultaneous neural network approximation for smooth functions.
    Hon S; Yang H
    Neural Netw; 2022 Oct; 154():152-164. PubMed ID: 35882083
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Approximation of smooth functionals using deep ReLU networks.
    Song L; Liu Y; Fan J; Zhou DX
    Neural Netw; 2023 Sep; 166():424-436. PubMed ID: 37549610
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nonlinear approximation via compositions.
    Shen Z; Yang H; Zhang S
    Neural Netw; 2019 Nov; 119():74-84. PubMed ID: 31401528
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A deep network construction that adapts to intrinsic dimensionality beyond the domain.
    Cloninger A; Klock T
    Neural Netw; 2021 Sep; 141():404-419. PubMed ID: 34146968
    [TBL] [Abstract][Full Text] [Related]  

  • 12. On the capacity of deep generative networks for approximating distributions.
    Yang Y; Li Z; Wang Y
    Neural Netw; 2022 Jan; 145():144-154. PubMed ID: 34749027
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Approximation in shift-invariant spaces with deep ReLU neural networks.
    Yang Y; Li Z; Wang Y
    Neural Netw; 2022 Sep; 153():269-281. PubMed ID: 35763879
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Deep Network With Approximation Error Being Reciprocal of Width to Power of Square Root of Depth.
    Shen Z; Yang H; Zhang S
    Neural Comput; 2021 Mar; 33(4):1005-1036. PubMed ID: 33513325
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Approximation rates for neural networks with encodable weights in smoothness spaces.
    Gühring I; Raslan M
    Neural Netw; 2021 Feb; 134():107-130. PubMed ID: 33310376
    [TBL] [Abstract][Full Text] [Related]  

  • 16. On minimal representations of shallow ReLU networks.
    Dereich S; Kassing S
    Neural Netw; 2022 Apr; 148():121-128. PubMed ID: 35123261
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Theory of deep convolutional neural networks III: Approximating radial functions.
    Mao T; Shi Z; Zhou DX
    Neural Netw; 2021 Dec; 144():778-790. PubMed ID: 34688019
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Smooth Function Approximation by Deep Neural Networks with General Activation Functions.
    Ohn I; Kim Y
    Entropy (Basel); 2019 Jun; 21(7):. PubMed ID: 33267341
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A comparison of deep networks with ReLU activation function and linear spline-type methods.
    Eckle K; Schmidt-Hieber J
    Neural Netw; 2019 Feb; 110():232-242. PubMed ID: 30616095
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Error bounds for deep ReLU networks using the Kolmogorov-Arnold superposition theorem.
    Montanelli H; Yang H
    Neural Netw; 2020 Sep; 129():1-6. PubMed ID: 32473577
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.