These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 30245575)

  • 1. Enhancements to AERMOD's Building Downwash Algorithms based on Wind-Tunnel and Embedded-LES Modeling.
    Monbureau EM; Heist DK; Perry SG; Brouwer LH; Foroutan H; Tang W
    Atmos Environ (1994); 2018 Apr; 179():321-330. PubMed ID: 30245575
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modeling lateral plume deflection in the wake of an elongated building.
    Monbureau EM; Heist DK; Perry SG; Tang W
    Atmos Environ (1994); 2020 Aug; 234():. PubMed ID: 33364910
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development, evaluation, and implementation of building downwash and plume rise enhancements in AERMOD.
    Petersen RL; Paumier JO; Guerra SA
    J Air Waste Manag Assoc; 2022 Dec; 72(12):1423-1441. PubMed ID: 36070482
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Simulations of dispersion through an irregular urban building array.
    Pirhalla M; Heist D; Perry S; Tang W; Brouwer L
    Atmos Environ (1994); 2021 Aug; 258():. PubMed ID: 34526852
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Critical review of the building downwash algorithms in AERMOD.
    Petersen RL; Guerra SA; Bova AS
    J Air Waste Manag Assoc; 2017 Aug; 67(8):826-835. PubMed ID: 28080305
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development and evaluation of the PRIME plume rise and building downwash model.
    Schulman LL; Strimaitis DG; Scire JS
    J Air Waste Manag Assoc; 2000 Mar; 50(3):378-90. PubMed ID: 10734710
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Numerical analysis of pollutant dispersion around elongated buildings: an embedded large eddy simulation approach.
    Foroutan H; Tang W; Heist DK; Perry SG; Brouwer LH; Monbureau EM
    Atmos Environ (1994); 2018 Aug; 187():117-130. PubMed ID: 30147428
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sensitivity of two dispersion models (AERMOD and ISCST3) to input parameters for a rural ground-level area source.
    Faulkner WB; Shaw BW; Grosch T
    J Air Waste Manag Assoc; 2008 Oct; 58(10):1288-96. PubMed ID: 18939775
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Contamination of fresh air intakes due to downwash from a rooftop structure.
    Saathoff P; Gupta A; Stathopoulos T; Lazure L
    J Air Waste Manag Assoc; 2009 Mar; 59(3):343-53. PubMed ID: 19320272
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Minimum turbulence assumptions and u* and L estimation for dispersion models during low-wind stable conditions.
    Hanna SR; Chowdhury B
    J Air Waste Manag Assoc; 2014 Mar; 64(3):309-21. PubMed ID: 24701689
    [TBL] [Abstract][Full Text] [Related]  

  • 11. How tall buildings affect turbulent air flows and dispersion of pollution within a neighbourhood.
    Aristodemou E; Boganegra LM; Mottet L; Pavlidis D; Constantinou A; Pain C; Robins A; ApSimon H
    Environ Pollut; 2018 Feb; 233():782-796. PubMed ID: 29132119
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dispersion of positron emitting radioactive gases in a complex urban building array: a comparison of dose modelling approaches.
    Gallacher DJ; Robins AG; Burt A; Chadwick S; Hayden P; Williams M
    J Radiol Prot; 2016 Dec; 36(4):746-784. PubMed ID: 27655037
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of the industrial source complex and AERMOD dispersion models: case study for human health risk assessment.
    Silverman KC; Tell JG; Sargent EV; Qiu Z
    J Air Waste Manag Assoc; 2007 Dec; 57(12):1439-46. PubMed ID: 18200928
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Simulation of gaseous pollutant dispersion around an isolated building using the k-ω SST (shear stress transport) turbulence model.
    Yu H; Thé J
    J Air Waste Manag Assoc; 2017 May; 67(5):517-536. PubMed ID: 27650217
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Scalar Fluxes Near a Tall Building in an Aligned Array of Rectangular Buildings.
    Fuka V; Xie ZT; Castro IP; Hayden P; Carpentieri M; Robins AG
    Boundary Layer Meteorol; 2018; 167(1):53-76. PubMed ID: 31258156
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Maximum ground-level concentrations with downwash--analysis.
    Bowman WA
    J Air Waste Manag Assoc; 2000 Mar; 50(3):348-56. PubMed ID: 10734707
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pseudo-source parameters for flares: Derivation, implementation, and comparison.
    Zelensky MJ; Zelt BW
    J Air Waste Manag Assoc; 2019 Apr; 69(4):450-458. PubMed ID: 30431395
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluation of low wind modeling approaches for two tall-stack databases.
    Paine R; Samani O; Kaplan M; Knipping E; Kumar N
    J Air Waste Manag Assoc; 2015 Nov; 65(11):1341-53. PubMed ID: 26302223
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Wind Tunnel Study into the Effects of Raised Intakes and Parapets on Fresh Air Intake Contamination by a Rooftop Stack.
    Lowery KP; Jacko RB
    J Air Waste Manag Assoc; 1996 Sep; 46(9):847-852. PubMed ID: 28081407
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Near-source air quality impact of a distributed natural gas combined heat and power facility.
    Yang B; Gu J; Zhang T; Zhang KM
    Environ Pollut; 2019 Mar; 246():650-657. PubMed ID: 30611941
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.