BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

240 related articles for article (PubMed ID: 30245741)

  • 21. Function of ORFC of the polyketide synthase gene cluster on fatty acid accumulation in Schizochytrium limacinum SR21.
    Shi Y; Chen Z; Li Y; Cao X; Yang L; Xu Y; Li Z; He N
    Biotechnol Biofuels; 2021 Jul; 14(1):163. PubMed ID: 34301326
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Low dissolved oxygen supply functions as a global regulator of the growth and metabolism of Aurantiochytrium sp. PKU#Mn16 in the early stages of docosahexaenoic acid fermentation.
    Liu L; Zhu X; Ye H; Wen Y; Sen B; Wang G
    Microb Cell Fact; 2023 Mar; 22(1):52. PubMed ID: 36918882
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Transcriptome Analysis Reveals an Eicosapentaenoic Acid Accumulation Mechanism in a
    Ou Y; Li Y; Feng S; Wang Q; Yang H
    Microbiol Spectr; 2023 Jun; 11(3):e0013023. PubMed ID: 37093006
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Impact of phosphate concentration on docosahexaenoic acid production and related enzyme activities in fermentation of Schizochytrium sp.
    Ren LJ; Feng Y; Li J; Qu L; Huang H
    Bioprocess Biosyst Eng; 2013 Sep; 36(9):1177-83. PubMed ID: 23108442
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Modulating DHA-Producing
    Liu PY; Li G; Lin CB; Wu JJ; Jiang S; Huang FH; Wan X
    ACS Synth Biol; 2022 Dec; 11(12):4171-4183. PubMed ID: 36454215
    [No Abstract]   [Full Text] [Related]  

  • 26. Enhancement of docosahexaenoic acid (DHA) production from Schizochytrium sp. S31 using different growth medium conditions.
    Sahin D; Tas E; Altindag UH
    AMB Express; 2018 Jan; 8(1):7. PubMed ID: 29368055
    [TBL] [Abstract][Full Text] [Related]  

  • 27. bZIP transcription factor FabR: Redox-dependent mechanism controlling docosahexaenoic acid biosynthesis and H
    Liu Y; Han X; Dai Y; Chen Z
    Free Radic Biol Med; 2024 Jan; 210():246-257. PubMed ID: 38042223
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Lipidomic and transcriptomic analysis of the increase in eicosapentaenoic acid under cobalamin deficiency of Schizochytrium sp.
    Yang LH; Liu MZ; Chen ZL; Tong LL; Guo DS
    Biotechnol J; 2024 Mar; 19(3):e2300612. PubMed ID: 38472102
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The role of fluconazole in the regulation of fatty acid and unsaponifiable matter biosynthesis in Schizochytrium sp. MYA 1381.
    Li J; Zhou H; Pan X; Li Z; Lu Y; He N; Meng T; Yao C; Chen C; Ling X
    BMC Microbiol; 2019 Nov; 19(1):256. PubMed ID: 31729956
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Development of a real-time bioprocess monitoring method for docosahexaenoic acid production by Schizochytrium sp.
    Guo DS; Ji XJ; Ren LJ; Li GL; Yin FW; Huang H
    Bioresour Technol; 2016 Sep; 216():422-7. PubMed ID: 27262097
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Enhancement of docosahexaenoic acid production by Schizochytrium sp. using a two-stage oxygen supply control strategy based on oxygen transfer coefficient.
    Qu L; Ji XJ; Ren LJ; Nie ZK; Feng Y; Wu WJ; Ouyang PK; Huang H
    Lett Appl Microbiol; 2011 Jan; 52(1):22-7. PubMed ID: 21070268
    [TBL] [Abstract][Full Text] [Related]  

  • 32. High-value utilization of the waste hydrolysate of Dioscorea zingiberensis for docosahexaenoic acid production in Schizochytrium sp.
    Bao Z; Zhu Y; Zhang K; Feng Y; Chen X; Lei M; Yu L
    Bioresour Technol; 2021 Sep; 336():125305. PubMed ID: 34044242
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Enhancement of docosahexaenoic acid synthesis by manipulation of antioxidant capacity and prevention of oxidative damage in Schizochytrium sp.
    Ren LJ; Sun XM; Ji XJ; Chen SL; Guo DS; Huang H
    Bioresour Technol; 2017 Jan; 223():141-148. PubMed ID: 27788427
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Enhancement of docosahexaenoic acid production by low-energy ion implantation coupled with screening method based on Sudan black B staining in Schizochytrium sp.
    Fu J; Chen T; Lu H; Lin Y; Xie X; Tian H; Zheng C; He D
    Bioresour Technol; 2016 Dec; 221():405-411. PubMed ID: 27660991
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The roles of different salts and a novel osmotic pressure control strategy for improvement of DHA production by Schizochytrium sp.
    Hu XC; Ren LJ; Chen SL; Zhang L; Ji XJ; Huang H
    Bioprocess Biosyst Eng; 2015 Nov; 38(11):2129-36. PubMed ID: 26350999
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Comprehensive analysis of metabolic alterations in Schizochytrium sp. strains with different DHA content.
    Yang J; Song X; Wang L; Cui Q
    J Chromatogr B Analyt Technol Biomed Life Sci; 2020 Dec; 1160():122193. PubMed ID: 32949924
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Improved production of docosahexaenoic acid in batch fermentation by newly-isolated strains of
    Wang Q; Ye H; Sen B; Xie Y; He Y; Park S; Wang G
    Synth Syst Biotechnol; 2018 Jun; 3(2):121-129. PubMed ID: 29900425
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Adaptive evolution of Schizochytrium sp. by continuous high oxygen stimulations to enhance docosahexaenoic acid synthesis.
    Sun XM; Ren LJ; Ji XJ; Chen SL; Guo DS; Huang H
    Bioresour Technol; 2016 Jul; 211():374-81. PubMed ID: 27030957
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The strategies to reduce cost and improve productivity in DHA production by Aurantiochytrium sp.: from biochemical to genetic respects.
    Xu X; Huang C; Xu Z; Xu H; Wang Z; Yu X
    Appl Microbiol Biotechnol; 2020 Nov; 104(22):9433-9447. PubMed ID: 32978687
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Function of the Polyketide Synthase Domains of
    Jia YL; Du F; Nong FT; Li J; Huang PW; Ma W; Gu Y; Sun XM
    J Agric Food Chem; 2023 Feb; 71(5):2446-2454. PubMed ID: 36696156
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.