These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
144 related articles for article (PubMed ID: 30245761)
1. Dynamics of Formation of a Vapor Nanobubble Around a Heated Nanoparticle. Maheshwari S; van der Hoef M; Prosperetti A; Lohse D J Phys Chem C Nanomater Interfaces; 2018 Sep; 122(36):20571-20580. PubMed ID: 30245761 [TBL] [Abstract][Full Text] [Related]
2. Nanobubbles around plasmonic nanoparticles: Thermodynamic analysis. Lombard J; Biben T; Merabia S Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Apr; 91(4):043007. PubMed ID: 25974580 [TBL] [Abstract][Full Text] [Related]
4. Targeted Nanoparticle Thermometry: A Method to Measure Local Temperature at the Nanoscale Point Where Water Vapor Nucleation Occurs. Alaulamie AA; Baral S; Johnson SC; Richardson HH Small; 2017 Jan; 13(1):. PubMed ID: 27699975 [TBL] [Abstract][Full Text] [Related]
5. Critical heat flux around strongly heated nanoparticles. Merabia S; Keblinski P; Joly L; Lewis LJ; Barrat JL Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Feb; 79(2 Pt 1):021404. PubMed ID: 19391744 [TBL] [Abstract][Full Text] [Related]
6. Evolution of light-induced vapor generation at a liquid-immersed metallic nanoparticle. Fang Z; Zhen YR; Neumann O; Polman A; García de Abajo FJ; Nordlander P; Halas NJ Nano Lett; 2013 Apr; 13(4):1736-42. PubMed ID: 23517407 [TBL] [Abstract][Full Text] [Related]
7. Vapor Nanobubbles around Heated Nanoparticles: Wetting Dependence of the Local Fluid Thermodynamics and Kinetics of Nucleation. Gutiérrez-Varela O; Lombard J; Biben T; Santamaria R; Merabia S Langmuir; 2023 Dec; 39(50):18263-18275. PubMed ID: 38061075 [TBL] [Abstract][Full Text] [Related]
8. Electrochemical Nucleation of Stable N2 Nanobubbles at Pt Nanoelectrodes. Chen Q; Wiedenroth HS; German SR; White HS J Am Chem Soc; 2015 Sep; 137(37):12064-9. PubMed ID: 26322525 [TBL] [Abstract][Full Text] [Related]
9. Bubble evolution and properties in homogeneous nucleation simulations. Angélil R; Diemand J; Tanaka KK; Tanaka H Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Dec; 90(6):063301. PubMed ID: 25615216 [TBL] [Abstract][Full Text] [Related]
10. Dynamic Equilibrium Model for a Bulk Nanobubble and a Microbubble Partly Covered with Hydrophobic Material. Yasui K; Tuziuti T; Kanematsu W; Kato K Langmuir; 2016 Nov; 32(43):11101-11110. PubMed ID: 26972826 [TBL] [Abstract][Full Text] [Related]
12. Formation of a nanobubble and its effect on the structural ordering of water in a CH Kaur SP; Sujith KS; Ramachandran CN Phys Chem Chem Phys; 2018 Apr; 20(14):9157-9166. PubMed ID: 29560970 [TBL] [Abstract][Full Text] [Related]
13. Natural Gas Evolution in a Gas Hydrate Melt: Effect of Thermodynamic Hydrate Inhibitors. Sujith KS; Ramachandran CN J Phys Chem B; 2017 Jan; 121(1):153-163. PubMed ID: 27935719 [TBL] [Abstract][Full Text] [Related]
15. Nucleation and Growth of a Nanobubble on Rough Surfaces. Maheshwari S; van Kruijsdijk C; Sanyal S; Harvey AD Langmuir; 2020 Apr; 36(15):4108-4115. PubMed ID: 32240592 [TBL] [Abstract][Full Text] [Related]
16. Role of Mutual Diffusion in the Dissolution Behavior of One Primary Bulk Gas Nanobubble in Liquid: A Molecular Dynamics Study. Li Y; Zhang LW; Wang B Langmuir; 2023 Jun; 39(22):7684-7693. PubMed ID: 37227443 [TBL] [Abstract][Full Text] [Related]
17. Extreme conditions in a dissolving air nanobubble. Yasui K; Tuziuti T; Kanematsu W Phys Rev E; 2016 Jul; 94(1-1):013106. PubMed ID: 27575216 [TBL] [Abstract][Full Text] [Related]
18. Molecular insights into methane hydrate dissociation: Role of methane nanobubble formation. Moorjani B; Adhikari J; Hait S J Chem Phys; 2024 Sep; 161(10):. PubMed ID: 39248242 [TBL] [Abstract][Full Text] [Related]
19. Generation and Evolution of Nanobubbles on Heated Nanoparticles: A Molecular Dynamics Study. Pu JH; Sun J; Wang W; Wang HS Langmuir; 2020 Mar; 36(9):2375-2382. PubMed ID: 32011891 [TBL] [Abstract][Full Text] [Related]