These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 30245761)

  • 21. Bubble formation in water with addition of a hydrophobic solute.
    Okamoto R; Onuki A
    Eur Phys J E Soft Matter; 2015 Jul; 38(7):72. PubMed ID: 26142694
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Kinetics of nanobubble generation around overheated nanoparticles.
    Lombard J; Biben T; Merabia S
    Phys Rev Lett; 2014 Mar; 112(10):105701. PubMed ID: 24679307
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Solvent Exchange Leading to Nanobubble Nucleation: A Molecular Dynamics Study.
    Xiao Q; Liu Y; Guo Z; Liu Z; Lohse D; Zhang X
    Langmuir; 2017 Aug; 33(32):8090-8096. PubMed ID: 28742364
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Direct simulations of homogeneous bubble nucleation: Agreement with classical nucleation theory and no local hot spots.
    Diemand J; Angélil R; Tanaka KK; Tanaka H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Nov; 90(5-1):052407. PubMed ID: 25493803
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effect of dissolved-gas concentration on bulk nanobubbles generation using ultrasonication.
    Lee JI; Yim BS; Kim JM
    Sci Rep; 2020 Nov; 10(1):18816. PubMed ID: 33139819
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Augmenting the Leidenfrost Temperature of Droplets via Nanobubble Dispersion.
    Vara Prasad GVVS; Sharma H; Nirmalkar N; Dhar P; Samanta D
    Langmuir; 2022 Dec; 38(51):15925-15936. PubMed ID: 36508708
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Modeling the Interaction between AFM Tips and Pinned Surface Nanobubbles.
    Guo Z; Liu Y; Xiao Q; Schönherr H; Zhang X
    Langmuir; 2016 Jan; 32(3):751-8. PubMed ID: 26751634
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effect of Surfactant on Electrochemically Generated Surface Nanobubbles.
    Suvira M; Zhang B
    Anal Chem; 2021 Mar; 93(12):5170-5176. PubMed ID: 33733748
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Nanoscale gas accumulation at solid-liquid interfaces: a molecular dynamics study.
    Varghese B; Sathian SP
    Phys Chem Chem Phys; 2022 Sep; 24(36):22298-22308. PubMed ID: 36098219
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Nanobubble-Nanoparticle Interactions in Bulk Solutions.
    Zhang M; Seddon JR
    Langmuir; 2016 Nov; 32(43):11280-11286. PubMed ID: 27480815
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Electrochemical Measurements of Single H2 Nanobubble Nucleation and Stability at Pt Nanoelectrodes.
    Chen Q; Luo L; Faraji H; Feldberg SW; White HS
    J Phys Chem Lett; 2014 Oct; 5(20):3539-44. PubMed ID: 26278606
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Molecular dynamics simulation of nanobubble nucleation on rough surfaces.
    Liu Y; Zhang X
    J Chem Phys; 2017 Apr; 146(16):164704. PubMed ID: 28456182
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Plasmonic Bubble Nucleation in Binary Liquids.
    Detert M; Zeng B; Wang Y; Le The H; Zandvliet HJW; Lohse D
    J Phys Chem C Nanomater Interfaces; 2020 Jan; 124(4):2591-2597. PubMed ID: 32030112
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Equilibrium sizes and formation energies of small and large Lennard-Jones clusters from molecular dynamics: a consistent comparison to Monte Carlo simulations and density functional theories.
    Julin J; Napari I; Merikanto J; Vehkamäki H
    J Chem Phys; 2008 Dec; 129(23):234506. PubMed ID: 19102537
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Plasmonic Bubble Nucleation and Growth in Water: Effect of Dissolved Air.
    Li X; Wang Y; Zaytsev ME; Lajoinie G; Le The H; Bomer JG; Eijkel JCT; Zandvliet HJW; Zhang X; Lohse D
    J Phys Chem C Nanomater Interfaces; 2019 Sep; 123(38):23586-23593. PubMed ID: 31583035
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Diffusive shielding stabilizes bulk nanobubble clusters.
    Weijs JH; Seddon JR; Lohse D
    Chemphyschem; 2012 Jun; 13(8):2197-204. PubMed ID: 22213224
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Stochastic computer experiments of the thermodynamic irreversibility of bulk nanobubbles in supersaturated and weak gas-liquid solutions.
    Al-Awad AS; Batet L; Rives R; Sedano L
    J Chem Phys; 2024 Jul; 161(2):. PubMed ID: 38984961
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The MUC1 Ectodomain: A Novel and Efficient Target for Gold Nanoparticle Clustering and Vapor Nanobubble Generation.
    Danysh BP; Constantinou PE; Lukianova-Hleb EY; Lapotko DO; Carson DD
    Theranostics; 2012; 2(8):777-87. PubMed ID: 22916077
    [TBL] [Abstract][Full Text] [Related]  

  • 39. What experiments on pinned nanobubbles can tell about the critical nucleus for bubble nucleation.
    Xiao Q; Liu Y; Guo Z; Liu Z; Frenkel D; Dobnikar J; Zhang X
    Eur Phys J E Soft Matter; 2017 Dec; 40(12):114. PubMed ID: 29273950
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Electrochemistry of single nanobubbles. Estimating the critical size of bubble-forming nuclei for gas-evolving electrode reactions.
    German SR; Edwards MA; Chen Q; Liu Y; Luo L; White HS
    Faraday Discuss; 2016 Dec; 193():223-240. PubMed ID: 27722703
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.