BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

221 related articles for article (PubMed ID: 3024619)

  • 1. Ligninase of Phanerochaete chrysosporium. Mechanism of its degradation of the non-phenolic arylglycerol beta-aryl ether substructure of lignin.
    Kirk TK; Tien M; Kersten PJ; Mozuch MD; Kalyanaraman B
    Biochem J; 1986 May; 236(1):279-87. PubMed ID: 3024619
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanism of oxidative C alpha-C beta cleavage of a lignin model dimer by Phanerochaete chrysosporium ligninase. Stoichiometry and involvement of free radicals.
    Hammel KE; Tien M; Kalyanaraman B; Kirk TK
    J Biol Chem; 1985 Jul; 260(14):8348-53. PubMed ID: 2989288
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Free hydroxyl radical is not involved in an important reaction of lignin degradation by Phanerochaete chrysosporium Burds.
    Kirk TK; Mozuch MD; Tien M
    Biochem J; 1985 Mar; 226(2):455-60. PubMed ID: 2986597
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Steady-state and transient-state kinetic studies on the oxidation of 3,4-dimethoxybenzyl alcohol catalyzed by the ligninase of Phanerocheate chrysosporium Burds.
    Tien M; Kirk TK; Bull C; Fee JA
    J Biol Chem; 1986 Feb; 261(4):1687-93. PubMed ID: 3003081
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Oxidation of phenolic arylglycerol beta-aryl ether lignin model compounds by manganese peroxidase from Phanerochaete chrysosporium: oxidative cleavage of an alpha-carbonyl model compound.
    Tuor U; Wariishi H; Schoemaker HE; Gold MH
    Biochemistry; 1992 Jun; 31(21):4986-95. PubMed ID: 1599925
    [TBL] [Abstract][Full Text] [Related]  

  • 6. H2O2 recycling during oxidation of the arylglycerol beta-aryl ether lignin structure by lignin peroxidase and glyoxal oxidase.
    Hammel KE; Mozuch MD; Jensen KA; Kersten PJ
    Biochemistry; 1994 Nov; 33(45):13349-54. PubMed ID: 7947743
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Substrate free radicals are intermediates in ligninase catalysis.
    Hammel KE; Kalyanaraman B; Kirk TK
    Proc Natl Acad Sci U S A; 1986 Jun; 83(11):3708-12. PubMed ID: 3012530
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transformations of arylpropane lignin model compounds by a lignin peroxidase of the white-rot fungus Phanerochaete chrysosporium.
    Huynh VB; Paszczyński A; Olson P; Crawford R
    Arch Biochem Biophys; 1986 Oct; 250(1):186-96. PubMed ID: 3767372
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The ligninase of Phanerochaete chrysosporium generates cation radicals from methoxybenzenes.
    Kersten PJ; Tien M; Kalyanaraman B; Kirk TK
    J Biol Chem; 1985 Mar; 260(5):2609-12. PubMed ID: 2982828
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Radical intermediates during degradation of lignin-model compounds and environmental pollutants: an electron spin resonance study.
    Kalyanaraman B
    Xenobiotica; 1995 Jul; 25(7):667-75. PubMed ID: 7483665
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evidence That Ceriporiopsis subvermispora Degrades Nonphenolic Lignin Structures by a One-Electron-Oxidation Mechanism.
    Srebotnik E; Jensen KA; Kawai S; Hammel KE
    Appl Environ Microbiol; 1997 Nov; 63(11):4435-40. PubMed ID: 16535732
    [TBL] [Abstract][Full Text] [Related]  

  • 12. 13C assignments of the carbon atoms in the aromatic rings of lignin model compounds of the arylglycerol beta-aryl ether type.
    Bardet M; Lundquist K; Parkås J; Robert D; von Unge S
    Magn Reson Chem; 2006 Oct; 44(10):976-9. PubMed ID: 16835899
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Catabolism of arylglycerol-beta-aryl ethers lignin model compounds by Pseudomonas cepacia 122.
    Odier E; Rolando C
    Biochimie; 1985 Feb; 67(2):191-7. PubMed ID: 3839140
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Oxidation of polycyclic aromatic hydrocarbons and dibenzo[p]-dioxins by Phanerochaete chrysosporium ligninase.
    Hammel KE; Kalyanaraman B; Kirk TK
    J Biol Chem; 1986 Dec; 261(36):16948-52. PubMed ID: 3023375
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Detection and characterization of a novel extracellular fungal enzyme that catalyzes the specific and hydrolytic cleavage of lignin guaiacylglycerol beta-aryl ether linkages.
    Otsuka Y; Sonoki T; Ikeda S; Kajita S; Nakamura M; Katayama Y
    Eur J Biochem; 2003 Jun; 270(11):2353-62. PubMed ID: 12755689
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Studies on compound I formation of the lignin peroxidase from Phanerochaete chrysosporium.
    Andrawis A; Johnson KA; Tien M
    J Biol Chem; 1988 Jan; 263(3):1195-8. PubMed ID: 3335539
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biomimetic oxidation of lignin model compounds by simple inorganic complexes.
    Huynh VB
    Biochem Biophys Res Commun; 1986 Sep; 139(3):1104-10. PubMed ID: 3767993
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Lignin and ligninase].
    Levit MN; Shkrob AM
    Bioorg Khim; 1992 Mar; 18(3):309-45. PubMed ID: 1524589
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thiol-mediated oxidation of nonphenolic lignin model compounds by manganese peroxidase of Phanerochaete chrysosporium.
    Wariishi H; Valli K; Renganathan V; Gold MH
    J Biol Chem; 1989 Aug; 264(24):14185-91. PubMed ID: 2760063
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Oxidation of benzo(a)pyrene by extracellular ligninases of Phanerochaete chrysosporium. Veratryl alcohol and stability of ligninase.
    Haemmerli SD; Leisola MS; Sanglard D; Fiechter A
    J Biol Chem; 1986 May; 261(15):6900-3. PubMed ID: 3700421
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.