These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

221 related articles for article (PubMed ID: 3024619)

  • 21. Properties of ligninase from Phanerochaete chrysosporium and their possible applications.
    Tien M
    Crit Rev Microbiol; 1987; 15(2):141-68. PubMed ID: 3322681
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Ligninase-mediated phenoxy radical formation and polymerization unaffected by cellobiose:quinone oxidoreductase.
    Odier E; Mozuch MD; Kalyanaraman B; Kirk TK
    Biochimie; 1988 Jun; 70(6):847-52. PubMed ID: 2844307
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Trametes versicolor ligninase: isozyme sequence homology and substrate specificity.
    Jönson L; Karlsson O; Lundquist K; Nyman PO
    FEBS Lett; 1989 Apr; 247(1):143-6. PubMed ID: 2707445
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Lignin peroxidase-catalyzed oxidation of nonphenolic trimeric lignin model compounds: fragmentation reactions in the intermediate radical cations.
    Baciocchi E; Fabbri C; Lanzalunga O
    J Org Chem; 2003 Nov; 68(23):9061-9. PubMed ID: 14604381
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Lignin-degrading enzyme from Phanerochaete chrysosporium: Purification, characterization, and catalytic properties of a unique H(2)O(2)-requiring oxygenase.
    Tien M; Kirk TK
    Proc Natl Acad Sci U S A; 1984 Apr; 81(8):2280-4. PubMed ID: 16593451
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Bacterial Catabolism of β-Hydroxypropiovanillone and β-Hydroxypropiosyringone Produced in the Reductive Cleavage of Arylglycerol-β-Aryl Ether in Lignin.
    Higuchi Y; Aoki S; Takenami H; Kamimura N; Takahashi K; Hishiyama S; Lancefield CS; Ojo OS; Katayama Y; Westwood NJ; Masai E
    Appl Environ Microbiol; 2018 Apr; 84(7):. PubMed ID: 29374031
    [No Abstract]   [Full Text] [Related]  

  • 27. Arylglycerol-gamma-Formyl Ester as an Aromatic Ring Cleavage Product of Nonphenolic beta-O-4 Lignin Substructure Model Compounds Degraded by Coriolus versicolor.
    Kawai S; Umezawa T; Higuchi T
    Appl Environ Microbiol; 1985 Dec; 50(6):1505-8. PubMed ID: 16346950
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Initial Reactivity of Linkages and Monomer Rings in Lignin Pyrolysis Revealed by ReaxFF Molecular Dynamics.
    Zhang T; Li X; Guo L
    Langmuir; 2017 Oct; 33(42):11646-11657. PubMed ID: 28838235
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Significant lability of guaiacylglycerol beta-phenacyl ether under alkaline conditions.
    Imai A; Yokoyama T; Matsumoto Y; Meshitsuka G
    J Agric Food Chem; 2007 Oct; 55(22):9043-6. PubMed ID: 17914873
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Photo- and radiation chemical induced degradation of lignin model compounds.
    Lanzalunga ; Bietti M
    J Photochem Photobiol B; 2000 Jul; 56(2-3):85-108. PubMed ID: 11079470
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Lignin peroxidase: resonance Raman spectral evidence for compound II and for a temperature-dependent coordination-state equilibrium in the ferric enzyme.
    Andersson LA; Renganathan V; Loehr TM; Gold MH
    Biochemistry; 1987 Apr; 26(8):2258-63. PubMed ID: 3040086
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Cloning and sequencing of a cDNA for a ligninase from Phanerochaete chrysosporium.
    Tien M; Tu CP
    Nature; 1987 Apr 2-8; 326(6112):520-3. PubMed ID: 3561490
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The biomimetic oxidation of beta-1, beta-0-4, beta-5, and biphenyl lignin model compounds by synthetic iron porphyrins.
    Cui F; Dolphin D
    Bioorg Med Chem; 1994 Jul; 2(7):735-42. PubMed ID: 7858983
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Reduction of CCl4 to the trichloromethyl radical by lignin peroxidase H2 from Phanerochaete chrysosporium.
    Shah MM; Grover TA; Aust SD
    Biochem Biophys Res Commun; 1993 Mar; 191(3):887-92. PubMed ID: 8385455
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Discovery of novel enzyme genes involved in the conversion of an arylglycerol-β-aryl ether metabolite and their use in generating a metabolic pathway for lignin valorization.
    Higuchi Y; Kato R; Tsubota K; Kamimura N; Westwood NJ; Masai E
    Metab Eng; 2019 Sep; 55():258-267. PubMed ID: 31390538
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Phenolic mediators enhance the manganese peroxidase catalyzed oxidation of recalcitrant lignin model compounds and synthetic lignin.
    Nousiainen P; Kontro J; Manner H; Hatakka A; Sipilä J
    Fungal Genet Biol; 2014 Nov; 72():137-149. PubMed ID: 25108071
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Characterization of an extracellular lignin peroxidase of the lignocellulolytic actinomycete Streptomyces viridosporus.
    Ramachandra M; Crawford DL; Hertel G
    Appl Environ Microbiol; 1988 Dec; 54(12):3057-63. PubMed ID: 3223769
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Oxidation of aromatic sulfides by lignin peroxidase from Phanerochaete chrysosporium.
    Baciocchi E; Gerini MF; Harvey PJ; Lanzalunga O; Mancinelli S
    Eur J Biochem; 2000 May; 267(9):2705-10. PubMed ID: 10785393
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Nature and kinetic analysis of carbon-carbon bond fragmentation reactions of cation radicals derived from SET-oxidation of lignin model compounds.
    Cho DW; Parthasarathi R; Pimentel AS; Maestas GD; Park HJ; Yoon UC; Dunaway-Mariano D; Gnanakaran S; Langan P; Mariano PS
    J Org Chem; 2010 Oct; 75(19):6549-62. PubMed ID: 20831160
    [TBL] [Abstract][Full Text] [Related]  

  • 40.
    Kontur WS; Bingman CA; Olmsted CN; Wassarman DR; Ulbrich A; Gall DL; Smith RW; Yusko LM; Fox BG; Noguera DR; Coon JJ; Donohue TJ
    J Biol Chem; 2018 Apr; 293(14):4955-4968. PubMed ID: 29449375
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.