These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 30246194)

  • 1. Step-like band alignment and stacking-dependent band splitting in trilayer TMD heterostructures.
    Wang H; Wei W; Li F; Huang B; Dai Y
    Phys Chem Chem Phys; 2018 Oct; 20(38):25000-25008. PubMed ID: 30246194
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interlayer exciton formation, relaxation, and transport in TMD van der Waals heterostructures.
    Jiang Y; Chen S; Zheng W; Zheng B; Pan A
    Light Sci Appl; 2021 Apr; 10(1):72. PubMed ID: 33811214
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Probing Evolution of Twist-Angle-Dependent Interlayer Excitons in MoSe
    Nayak PK; Horbatenko Y; Ahn S; Kim G; Lee JU; Ma KY; Jang AR; Lim H; Kim D; Ryu S; Cheong H; Park N; Shin HS
    ACS Nano; 2017 Apr; 11(4):4041-4050. PubMed ID: 28363013
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Layer-Coupled States Facilitate Ultrafast Charge Transfer in a Transition Metal Dichalcogenide Trilayer Heterostructure.
    Zereshki P; Wei Y; Long R; Zhao H
    J Phys Chem Lett; 2018 Oct; 9(20):5970-5978. PubMed ID: 30257564
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Direct band gap and strong Rashba effect in van der Waals heterostructures of InSe and Sb single layers.
    Fang D; Chen S; Li Y; Monserrat B
    J Phys Condens Matter; 2021 Feb; 33(15):. PubMed ID: 33418556
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ultrafast dynamics in van der Waals heterostructures.
    Jin C; Ma EY; Karni O; Regan EC; Wang F; Heinz TF
    Nat Nanotechnol; 2018 Nov; 13(11):994-1003. PubMed ID: 30397296
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electronic structure, optical and photocatalytic performance of SiC-MX
    Din HU; Idrees M; Rehman G; Nguyen CV; Gan LY; Ahmad I; Maqbool M; Amin B
    Phys Chem Chem Phys; 2018 Oct; 20(37):24168-24175. PubMed ID: 30207335
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synthesis of transition metal dichalcogenide van der Waals heterostructures through chemical vapor deposition.
    Ren Y; Zhang L; Zhu X; Li H; Dong Q; Liu S
    J Phys Condens Matter; 2022 Apr; 34(25):. PubMed ID: 35358958
    [TBL] [Abstract][Full Text] [Related]  

  • 9. First-principles study of valley splitting of transition-metal dichalcogenides in MX
    Ge M; Chu L; Zeng F; Cao Z; Zhang J
    Phys Chem Chem Phys; 2024 Sep; 26(36):23784-23791. PubMed ID: 39229752
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Indirect excitons in van der Waals heterostructures at room temperature.
    Calman EV; Fogler MM; Butov LV; Hu S; Mishchenko A; Geim AK
    Nat Commun; 2018 May; 9(1):1895. PubMed ID: 29760404
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Efficient band structure modulations in two-dimensional MnPSe
    Pei Q; Wang X; Zou J; Mi W
    Nanotechnology; 2018 May; 29(21):214001. PubMed ID: 29522421
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Layer Rotation-Angle-Dependent Excitonic Absorption in van der Waals Heterostructures Revealed by Electron Energy Loss Spectroscopy.
    Gogoi PK; Lin YC; Senga R; Komsa HP; Wong SL; Chi D; Krasheninnikov AV; Li LJ; Breese MBH; Pennycook SJ; Wee ATS; Suenaga K
    ACS Nano; 2019 Aug; 13(8):9541-9550. PubMed ID: 31345026
    [TBL] [Abstract][Full Text] [Related]  

  • 13. First-principles calculations of the electronic properties of SiC-based bilayer and trilayer heterostructures.
    Li S; Sun M; Chou JP; Wei J; Xing H; Hu A
    Phys Chem Chem Phys; 2018 Oct; 20(38):24726-24734. PubMed ID: 30225488
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Intriguing electronic, optical and photocatalytic performance of BSe, M
    Munawar M; Idrees M; Ahmad I; Din HU; Amin B
    RSC Adv; 2021 Dec; 12(1):42-52. PubMed ID: 35424496
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transition Metal Dichalcogenides (TMDCs) Heterostructures: Synthesis, Excitons and Photoelectric Properties.
    Fan J; Sun M
    Chem Rec; 2022 Jun; 22(6):e202100313. PubMed ID: 35452180
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optoelectronic and solar cell applications of Janus monolayers and their van der Waals heterostructures.
    Idrees M; Din HU; Ali R; Rehman G; Hussain T; Nguyen CV; Ahmad I; Amin B
    Phys Chem Chem Phys; 2019 Aug; 21(34):18612-18621. PubMed ID: 31414085
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Double Indirect Interlayer Exciton in a MoSe
    Hanbicki AT; Chuang HJ; Rosenberger MR; Hellberg CS; Sivaram SV; McCreary KM; Mazin II; Jonker BT
    ACS Nano; 2018 May; 12(5):4719-4726. PubMed ID: 29727170
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electronic structures of in-plane two-dimensional transition-metal dichalcogenide heterostructures.
    Wei W; Dai Y; Sun Q; Yin N; Han S; Huang B; Jacob T
    Phys Chem Chem Phys; 2015 Nov; 17(43):29380-6. PubMed ID: 26473697
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Achieving a direct band gap and high power conversion efficiency in an SbI
    Lai K; Li H; Xu YK; Zhang WB; Dai J
    Phys Chem Chem Phys; 2019 Jan; 21(5):2619-2627. PubMed ID: 30657497
    [TBL] [Abstract][Full Text] [Related]  

  • 20. MoirĂ© Intralayer Excitons in a MoSe
    Zhang N; Surrente A; Baranowski M; Maude DK; Gant P; Castellanos-Gomez A; Plochocka P
    Nano Lett; 2018 Dec; 18(12):7651-7657. PubMed ID: 30403876
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.