BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 30246295)

  • 1. Visuospatial sequence learning on the serial reaction time task modulates the P1 event-related potential.
    Lum JAG; Lammertink I; Clark GM; Fuelscher I; Hyde C; Enticott PG; Ullman MT
    Psychophysiology; 2019 Feb; 56(2):e13292. PubMed ID: 30246295
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrophysiological evidence of sustained spatial attention effects over anterior cortex: Possible contribution of the anterior insula.
    Berchicci M; Ten Brink AF; Quinzi F; Perri RL; Spinelli D; Di Russo F
    Psychophysiology; 2019 Jul; 56(7):e13369. PubMed ID: 30927459
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of visuospatial implicit sequence learning on visual stimulus processing: Evidence from event-related potentials and neural synchrony.
    Fujii Y; Kimura M; Takeda Y
    Acta Psychol (Amst); 2022 Aug; 228():103662. PubMed ID: 35785681
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Filtering performance in visual working memory is improved by reducing early spatial attention to the distractors.
    Allon AS; Luria R
    Psychophysiology; 2019 May; 56(5):e13323. PubMed ID: 30609072
    [TBL] [Abstract][Full Text] [Related]  

  • 5. When and where perceptual load interacts with voluntary visuospatial attention: an event-related potential and dipole modeling study.
    Fu S; Zinni M; Squire PN; Kumar R; Caggiano DM; Parasuraman R
    Neuroimage; 2008 Feb; 39(3):1345-55. PubMed ID: 18006335
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Covert signs of expectancy in serial reaction time tasks revealed by event-related potentials.
    Sommer W; Leuthold H; Soetens E
    Percept Psychophys; 1999 Feb; 61(2):342-53. PubMed ID: 10089765
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dynamics of the spatial scale of visual attention revealed by brain event-related potentials.
    Luo YJ; Greenwood PM; Parasuraman R
    Brain Res Cogn Brain Res; 2001 Dec; 12(3):371-81. PubMed ID: 11689297
    [TBL] [Abstract][Full Text] [Related]  

  • 8. On the influence of informational content and key-response effect mapping on implicit learning and error monitoring in the serial reaction time (SRT) task.
    Rüsseler J; Münte TF; Wiswede D
    Exp Brain Res; 2018 Jan; 236(1):259-273. PubMed ID: 29128978
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Visuospatial perceptual sequence learning and eye movements.
    Coomans D; Deroost N; Vandenbossche J; Van den Bussche E; Soetens E
    Exp Psychol; 2012 Jan; 59(5):279-85. PubMed ID: 22617313
    [TBL] [Abstract][Full Text] [Related]  

  • 10. EEG-ERP dynamics in a visual Continuous Performance Test.
    Karamacoska D; Barry RJ; De Blasio FM; Steiner GZ
    Int J Psychophysiol; 2019 Dec; 146():249-260. PubMed ID: 31648022
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of working memory load on electrophysiological markers of visuospatial orienting in a spatial cueing task simulating a traffic situation.
    Vossen AY; Ross V; Jongen EM; Ruiter RA; Smulders FT
    Psychophysiology; 2016 Feb; 53(2):237-51. PubMed ID: 26524126
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Are eyes special? Electrophysiological and behavioural evidence for a dissociation between eye-gaze and arrows attentional mechanisms.
    Marotta A; Lupiáñez J; Román-Caballero R; Narganes-Pineda C; Martín-Arévalo E
    Neuropsychologia; 2019 Jun; 129():146-152. PubMed ID: 30935837
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Perceptual load, voluntary attention, and aging: an event-related potential study.
    Wang Y; Fu S; Greenwood P; Luo Y; Parasuraman R
    Int J Psychophysiol; 2012 Apr; 84(1):17-25. PubMed ID: 22248536
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Neurobehavioral correlates of the rapid formation of the symbolic control of visuospatial attention.
    Trujillo LT; Schnyer DM
    Psychophysiology; 2011 Sep; 48(9):1227-41. PubMed ID: 21446995
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Attentional selection of multiple goal positions before rapid hand movement sequences: an event-related potential study.
    Baldauf D; Deubel H
    J Cogn Neurosci; 2009 Jan; 21(1):18-29. PubMed ID: 18510446
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Stimulus- and Response-locked Posterior Contralateral Negativity Bisect Cognitive Operations in Visual Search.
    Drisdelle BL; Jolicœur P
    J Cogn Neurosci; 2019 Apr; 31(4):574-591. PubMed ID: 30566367
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Independent learning of spatial and nonspatial sequences.
    Remillard G
    Can J Exp Psychol; 2017 Dec; 71(4):283-298. PubMed ID: 28493740
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Category-based attentional capture can be influenced by color- and shape-dimensions independently in the conjunction search task.
    Wu X; Wang X; Saab R; Jiang Y
    Psychophysiology; 2020 Apr; 57(4):e13526. PubMed ID: 31953842
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Punishment-related memory-guided attention: Neural dynamics of perceptual modulation.
    Suárez-Suárez S; Rodríguez Holguín S; Cadaveira F; Nobre AC; Doallo S
    Cortex; 2019 Jun; 115():231-245. PubMed ID: 30852377
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hand function, not proximity, biases visuotactile integration later in object processing: An ERP study.
    Vyas DB; Garza JP; Reed CL
    Conscious Cogn; 2019 Mar; 69():26-35. PubMed ID: 30685514
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.