These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
194 related articles for article (PubMed ID: 30246295)
1. Visuospatial sequence learning on the serial reaction time task modulates the P1 event-related potential. Lum JAG; Lammertink I; Clark GM; Fuelscher I; Hyde C; Enticott PG; Ullman MT Psychophysiology; 2019 Feb; 56(2):e13292. PubMed ID: 30246295 [TBL] [Abstract][Full Text] [Related]
2. Electrophysiological evidence of sustained spatial attention effects over anterior cortex: Possible contribution of the anterior insula. Berchicci M; Ten Brink AF; Quinzi F; Perri RL; Spinelli D; Di Russo F Psychophysiology; 2019 Jul; 56(7):e13369. PubMed ID: 30927459 [TBL] [Abstract][Full Text] [Related]
3. Effects of visuospatial implicit sequence learning on visual stimulus processing: Evidence from event-related potentials and neural synchrony. Fujii Y; Kimura M; Takeda Y Acta Psychol (Amst); 2022 Aug; 228():103662. PubMed ID: 35785681 [TBL] [Abstract][Full Text] [Related]
4. Filtering performance in visual working memory is improved by reducing early spatial attention to the distractors. Allon AS; Luria R Psychophysiology; 2019 May; 56(5):e13323. PubMed ID: 30609072 [TBL] [Abstract][Full Text] [Related]
5. When and where perceptual load interacts with voluntary visuospatial attention: an event-related potential and dipole modeling study. Fu S; Zinni M; Squire PN; Kumar R; Caggiano DM; Parasuraman R Neuroimage; 2008 Feb; 39(3):1345-55. PubMed ID: 18006335 [TBL] [Abstract][Full Text] [Related]
6. Covert signs of expectancy in serial reaction time tasks revealed by event-related potentials. Sommer W; Leuthold H; Soetens E Percept Psychophys; 1999 Feb; 61(2):342-53. PubMed ID: 10089765 [TBL] [Abstract][Full Text] [Related]
7. Dynamics of the spatial scale of visual attention revealed by brain event-related potentials. Luo YJ; Greenwood PM; Parasuraman R Brain Res Cogn Brain Res; 2001 Dec; 12(3):371-81. PubMed ID: 11689297 [TBL] [Abstract][Full Text] [Related]
8. On the influence of informational content and key-response effect mapping on implicit learning and error monitoring in the serial reaction time (SRT) task. Rüsseler J; Münte TF; Wiswede D Exp Brain Res; 2018 Jan; 236(1):259-273. PubMed ID: 29128978 [TBL] [Abstract][Full Text] [Related]
9. Visuospatial perceptual sequence learning and eye movements. Coomans D; Deroost N; Vandenbossche J; Van den Bussche E; Soetens E Exp Psychol; 2012 Jan; 59(5):279-85. PubMed ID: 22617313 [TBL] [Abstract][Full Text] [Related]
10. EEG-ERP dynamics in a visual Continuous Performance Test. Karamacoska D; Barry RJ; De Blasio FM; Steiner GZ Int J Psychophysiol; 2019 Dec; 146():249-260. PubMed ID: 31648022 [TBL] [Abstract][Full Text] [Related]
11. Effect of working memory load on electrophysiological markers of visuospatial orienting in a spatial cueing task simulating a traffic situation. Vossen AY; Ross V; Jongen EM; Ruiter RA; Smulders FT Psychophysiology; 2016 Feb; 53(2):237-51. PubMed ID: 26524126 [TBL] [Abstract][Full Text] [Related]
12. Are eyes special? Electrophysiological and behavioural evidence for a dissociation between eye-gaze and arrows attentional mechanisms. Marotta A; Lupiáñez J; Román-Caballero R; Narganes-Pineda C; Martín-Arévalo E Neuropsychologia; 2019 Jun; 129():146-152. PubMed ID: 30935837 [TBL] [Abstract][Full Text] [Related]
13. Perceptual load, voluntary attention, and aging: an event-related potential study. Wang Y; Fu S; Greenwood P; Luo Y; Parasuraman R Int J Psychophysiol; 2012 Apr; 84(1):17-25. PubMed ID: 22248536 [TBL] [Abstract][Full Text] [Related]
14. Neurobehavioral correlates of the rapid formation of the symbolic control of visuospatial attention. Trujillo LT; Schnyer DM Psychophysiology; 2011 Sep; 48(9):1227-41. PubMed ID: 21446995 [TBL] [Abstract][Full Text] [Related]
15. Attentional selection of multiple goal positions before rapid hand movement sequences: an event-related potential study. Baldauf D; Deubel H J Cogn Neurosci; 2009 Jan; 21(1):18-29. PubMed ID: 18510446 [TBL] [Abstract][Full Text] [Related]
16. Stimulus- and Response-locked Posterior Contralateral Negativity Bisect Cognitive Operations in Visual Search. Drisdelle BL; Jolicœur P J Cogn Neurosci; 2019 Apr; 31(4):574-591. PubMed ID: 30566367 [TBL] [Abstract][Full Text] [Related]
17. Independent learning of spatial and nonspatial sequences. Remillard G Can J Exp Psychol; 2017 Dec; 71(4):283-298. PubMed ID: 28493740 [TBL] [Abstract][Full Text] [Related]
18. Category-based attentional capture can be influenced by color- and shape-dimensions independently in the conjunction search task. Wu X; Wang X; Saab R; Jiang Y Psychophysiology; 2020 Apr; 57(4):e13526. PubMed ID: 31953842 [TBL] [Abstract][Full Text] [Related]