These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 30246295)

  • 21. Decoding attention control and selection in visual spatial attention.
    Hong X; Bo K; Meyyappan S; Tong S; Ding M
    Hum Brain Mapp; 2020 Oct; 41(14):3900-3921. PubMed ID: 32542852
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Neurocognitive performance of badminton players at different competitive levels in visuospatial attention tasks.
    Chang CL; Gan YC; Pan CY; Tseng YT; Wang TC; Tsai CL
    Exp Brain Res; 2024 Aug; 242(8):1933-1946. PubMed ID: 38900160
    [TBL] [Abstract][Full Text] [Related]  

  • 23. From alternation to repetition: Spatial attention biases contribute to sequential effects in a choice reaction-time task.
    Green JJ; Spalek TM; McDonald JJ
    Cogn Neurosci; 2020 Jan; 11(1-2):24-36. PubMed ID: 31512985
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Isolating event-related potential components associated with voluntary control of visuo-spatial attention.
    McDonald JJ; Green JJ
    Brain Res; 2008 Aug; 1227():96-109. PubMed ID: 18621037
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Explicit and implicit learning of event sequences: evidence from event-related brain potentials.
    Eimer M; Goschke T; Schlaghecken F; Stürmer B
    J Exp Psychol Learn Mem Cogn; 1996 Jul; 22(4):970-87. PubMed ID: 8708606
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Neural Correlates of Enhanced Visual Attentional Control in Action Video Game Players: An Event-Related Potential Study.
    Föcker J; Mortazavi M; Khoe W; Hillyard SA; Bavelier D
    J Cogn Neurosci; 2019 Mar; 31(3):377-389. PubMed ID: 29308981
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Acute psychological stress promotes general alertness and attentional control processes: An ERP study.
    Qi M; Gao H
    Psychophysiology; 2020 Apr; 57(4):e13521. PubMed ID: 31898811
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Incidental learning of a visuo-motor sequence modulates saccadic amplitude: Evidence from the serial reaction time task.
    Lum JAG
    J Exp Psychol Learn Mem Cogn; 2020 Oct; 46(10):1881-1891. PubMed ID: 32584081
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Event-related potential correlates of the interaction between attention and spatiotemporal context regularity in vision.
    Pollux PM; Hall S; Roebuck H; Guo K
    Neuroscience; 2011 Sep; 190():258-69. PubMed ID: 21664952
    [TBL] [Abstract][Full Text] [Related]  

  • 30. High-resolution ERP mapping of cortical activation related to implicit object-location memory.
    Murphy JS; Wynne CE; O'Rourke EM; Commins S; Roche RA
    Biol Psychol; 2009 Dec; 82(3):234-45. PubMed ID: 19683556
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Learning without consciously knowing: evidence from event-related potentials in sequence learning.
    Fu Q; Bin G; Dienes Z; Fu X; Gao X
    Conscious Cogn; 2013 Mar; 22(1):22-34. PubMed ID: 23247079
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Can subitizing survive the attentional blink? An ERP study.
    Xu X; Liu C
    Neurosci Lett; 2008 Aug; 440(2):140-4. PubMed ID: 18556118
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Differences in visuospatial cognition among table tennis players of different skill levels: an event-related potential study.
    Chen KF; Chueh TY; Hung TM
    PeerJ; 2024; 12():e17295. PubMed ID: 38827290
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Neural correlates of sequence encoding in visuomotor learning.
    Agam Y; Huang J; Sekuler R
    J Neurophysiol; 2010 Mar; 103(3):1418-24. PubMed ID: 20071631
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Selection history alters attentional filter settings persistently and beyond top-down control.
    Kadel H; Feldmann-Wüstefeld T; Schubö A
    Psychophysiology; 2017 May; 54(5):736-754. PubMed ID: 28169422
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Disruption of neural systems of visual attention in schizophrenia.
    Potts GF; O'Donnell BF; Hirayasu Y; McCarley RW
    Arch Gen Psychiatry; 2002 May; 59(5):418-24. PubMed ID: 11982445
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Visuospatial working memory capacity predicts the organization of acquired explicit motor sequences.
    Bo J; Seidler RD
    J Neurophysiol; 2009 Jun; 101(6):3116-25. PubMed ID: 19357338
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Evidence for the auditory P3a reflecting an automatic process: elicitation during highly-focused continuous visual attention.
    Muller-Gass A; Macdonald M; Schröger E; Sculthorpe L; Campbell K
    Brain Res; 2007 Sep; 1170():71-8. PubMed ID: 17692834
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Does the motor system contribute to the perception of changes in objects visual attributes? The neural dynamics of sensory binding by action.
    Wamain Y; Corveleyn X; Ott L; Coello Y
    Neuropsychologia; 2019 Sep; 132():107121. PubMed ID: 31199954
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Exogenous and endogenous orienting of visuospatial attention in P300-guided brain computer interfaces: a pilot study on healthy participants.
    Marchetti M; Piccione F; Silvoni S; Priftis K
    Clin Neurophysiol; 2012 Apr; 123(4):774-9. PubMed ID: 21903462
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.