These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

234 related articles for article (PubMed ID: 30246490)

  • 1. Combined effects of warming and nutrients on marine communities are moderated by predators and vary across functional groups.
    White L; Donohue I; Emmerson MC; O'Connor NE
    Glob Chang Biol; 2018 Dec; 24(12):5853-5866. PubMed ID: 30246490
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Size-balanced community reorganization in response to nutrients and warming.
    McElroy DJ; O'Gorman EJ; Schneider FD; Hetjens H; Le Merrer P; Coleman RA; Emmerson M
    Glob Chang Biol; 2015 Nov; 21(11):3971-81. PubMed ID: 26147063
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Environmental context determines multi-trophic effects of consumer species loss.
    O'Connor NE; Donohue I
    Glob Chang Biol; 2013 Feb; 19(2):431-40. PubMed ID: 23504782
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Wave action modifies the effects of consumer diversity and warming on algal assemblages.
    Mrowicki RJ; O'Connor NE
    Ecology; 2015 Apr; 96(4):1020-9. PubMed ID: 26230022
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Combining mesocosms with models reveals effects of global warming and ocean acidification on a temperate marine ecosystem.
    Ullah H; Fordham DA; Goldenberg SU; Nagelkerken I
    Ecol Appl; 2024 Jun; 34(4):e2977. PubMed ID: 38706047
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interaction strength between different grazers and macroalgae mediated by ocean acidification over warming gradients.
    Sampaio E; Rodil IF; Vaz-Pinto F; Fernández A; Arenas F
    Mar Environ Res; 2017 Apr; 125():25-33. PubMed ID: 28088495
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Predicting interactions among fishing, ocean warming, and ocean acidification in a marine system with whole-ecosystem models.
    Griffith GP; Fulton EA; Gorton R; Richardson AJ
    Conserv Biol; 2012 Dec; 26(6):1145-52. PubMed ID: 23009091
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Macroalgal blooms alter community structure and primary productivity in marine ecosystems.
    Lyons DA; Arvanitidis C; Blight AJ; Chatzinikolaou E; Guy-Haim T; Kotta J; Orav-Kotta H; Queirós AM; Rilov G; Somerfield PJ; Crowe TP
    Glob Chang Biol; 2014 Sep; 20(9):2712-24. PubMed ID: 24890042
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Unexpected resilience of a seagrass system exposed to global stressors.
    Hughes BB; Lummis SC; Anderson SC; Kroeker KJ
    Glob Chang Biol; 2018 Jan; 24(1):224-234. PubMed ID: 28752587
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Indirect effects of predators control herbivore richness and abundance in a benthic eelgrass (Zostera marina) mesograzer community.
    Amundrud SL; Srivastava DS; O'Connor MI
    J Anim Ecol; 2015 Jul; 84(4):1092-102. PubMed ID: 25660764
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dominance, biomass and extinction resistance determine the consequences of biodiversity loss for multiple coastal ecosystem processes.
    Davies TW; Jenkins SR; Kingham R; Kenworthy J; Hawkins SJ; Hiddink JG
    PLoS One; 2011; 6(12):e28362. PubMed ID: 22163297
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Trophic-level dependent effects on CO2 emissions from experimental stream ecosystems.
    Atwood TB; Hammill E; Richardson JS
    Glob Chang Biol; 2014 Nov; 20(11):3386-96. PubMed ID: 24753392
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Warming and top predator loss drive direct and indirect effects on multiple trophic groups within and across ecosystems.
    Antiqueira PAP; Petchey OL; Rezende F; Machado Velho LF; Rodrigues LC; Romero GQ
    J Anim Ecol; 2022 Feb; 91(2):428-442. PubMed ID: 34808001
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The ecological impacts of multiple environmental stressors on coastal biofilm bacteria.
    Ferguson RMW; O'Gorman EJ; McElroy DJ; McKew BA; Coleman RA; Emmerson MC; Dumbrell AJ
    Glob Chang Biol; 2021 Jul; 27(13):3166-3178. PubMed ID: 33797829
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Distinguishing between direct and indirect effects of predators in complex ecosystems.
    O'Connor NE; Emmerson MC; Crowe TP; Donohue I
    J Anim Ecol; 2013 Mar; 82(2):438-48. PubMed ID: 23163528
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Predator and prey biodiversity relationship and its consequences on marine ecosystem functioning-interplay between nanoflagellates and bacterioplankton.
    Yang JW; Wu W; Chung CC; Chiang KP; Gong GC; Hsieh CH
    ISME J; 2018 Jun; 12(6):1532-1542. PubMed ID: 29703955
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fear Mediates Trophic Cascades: Nonconsumptive Effects of Predators Drive Aquatic Ecosystem Function.
    Breviglieri CPB; Oliveira PS; Romero GQ
    Am Nat; 2017 May; 189(5):490-500. PubMed ID: 28410025
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Climate-induced changes in bottom-up and top-down processes independently alter a marine ecosystem.
    Jochum M; Schneider FD; Crowe TP; Brose U; O'Gorman EJ
    Philos Trans R Soc Lond B Biol Sci; 2012 Nov; 367(1605):2962-70. PubMed ID: 23007084
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of trophic skewing of species richness on ecosystem functioning in a diverse marine community.
    Reynolds PL; Bruno JF
    PLoS One; 2012; 7(5):e36196. PubMed ID: 22693549
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Climate warming and agricultural stressors interact to determine stream macroinvertebrate community dynamics.
    Piggott JJ; Townsend CR; Matthaei CD
    Glob Chang Biol; 2015 May; 21(5):1887-906. PubMed ID: 25581853
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.