These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 3024657)

  • 1. Production of superoxide anion radicals during the oxidative metabolism of amino-chloramphenicol.
    Teo S; Pohl L; Halpert J
    Biochem Pharmacol; 1986 Dec; 35(24):4584-6. PubMed ID: 3024657
    [No Abstract]   [Full Text] [Related]  

  • 2. [NADPH2 and organic hydroperoxide-dependent oxidation of adrenaline to adrenochromes in liver and brain microsomes].
    Savov VM; Eluashvili IA; Pisarev VA; Prilipko LL; Kagan VE
    Biull Eksp Biol Med; 1980 Nov; 90(11):555-7. PubMed ID: 6256023
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The modulation by arylamines of the in vitro formation of superoxide anion radicals and hydrogen peroxide by rat liver microsomes.
    Manno M; Ioannides C; Gibson GG
    Toxicol Lett; 1985 May; 25(2):121-30. PubMed ID: 2988156
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microsomal superoxide anion production and NADPH-oxidation in a series of 22 aziridinylbenzoquinones.
    Prins B; Koster AS; Verboom W; Reinhoudt DN
    Biochem Pharmacol; 1989 Nov; 38(21):3753-7. PubMed ID: 2557029
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enzymatic reduction of chloramphenicol and nitrosochloramphenicol by rat liver microsomal preparations.
    Lim LO; Yunis AA
    Pharmacology; 1983; 27(1):58-64. PubMed ID: 6611649
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Production of superoxide ions in rat liver microsomes.
    Debey P; Balny C
    Biochimie; 1973; 55(3):329-32. PubMed ID: 4147620
    [No Abstract]   [Full Text] [Related]  

  • 7. Interaction of heme nonapeptide derived from cytochrome c with microsomal reductases.
    Végh M; Kramer M; Horváth I
    Biochim Biophys Acta; 1986 Jun; 882(1):6-11. PubMed ID: 3011109
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Generation of alloxan free radicals in chemical and biological systems: implication in the diabetogenic action of alloxan.
    Nukatsuka M; Sakurai H; Kawada J
    Biochem Biophys Res Commun; 1989 Nov; 165(1):278-83. PubMed ID: 2556138
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of mansonones on lipid peroxidation, P450 monooxygenase activity, and superoxide anion generation by rat liver microsomes.
    Villamil SF; Dubin M; Galeffi C; Stoppani AO
    Biochem Pharmacol; 1990 Nov; 40(10):2343-51. PubMed ID: 2173928
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metabolic N-oxide formation by rabbit-liver microsomal cytochrome P-4502B4: involvement of superoxide in the NADPH-dependent N-oxygenation of N,N-dimethylaniline.
    Hlavica P; Künzel-Mulas U
    Biochim Biophys Acta; 1993 Aug; 1158(1):83-90. PubMed ID: 8394743
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microsomal reduction of bisulfite (aqueous sulfur dioxide)--sulfur dioxide anion free radical formation by cytochrome P-450.
    Mottley C; Harman LS; Mason RP
    Biochem Pharmacol; 1985 Aug; 34(16):3005-8. PubMed ID: 2992528
    [No Abstract]   [Full Text] [Related]  

  • 12. A new pathway for the oxidative metabolism of chloramphenicol by rat liver microsomes.
    Morris PL; Burke TR; George JW; Pohl LR
    Drug Metab Dispos; 1982; 10(5):439-45. PubMed ID: 6128189
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spin trapping of alcohol-derived radicals in microsomes and reconstituted systems by electron spin resonance.
    Albano E; Tomasi A; Ingelman-Sundberg M
    Methods Enzymol; 1994; 233():117-27. PubMed ID: 8015450
    [No Abstract]   [Full Text] [Related]  

  • 14. Production of superoxide during the metabolism of nitrazepam.
    Rosen GM; Rauckman EJ; Wilson RL; Tschanz C
    Xenobiotica; 1984 Oct; 14(10):785-94. PubMed ID: 6095542
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Production of active oxygen in microsomes].
    Shimada O; Yasuda H; Takemori S
    Tanpakushitsu Kakusan Koso; 1988 Dec; 33(16):2737-43. PubMed ID: 2855139
    [No Abstract]   [Full Text] [Related]  

  • 16. Cytochrome P450IIE1 metabolism of pyridines: evidence for production of a reactive intermediate which exhibits redox-cycling activity and causes DNA damage.
    Kim SG; Novak RF
    Adv Exp Med Biol; 1991; 283():753-8. PubMed ID: 1648871
    [No Abstract]   [Full Text] [Related]  

  • 17. Role of P450IIE1 in the metabolism of 3-hydroxypyridine, a constituent of tobacco smoke: redox cycling and DNA strand scission by the metabolite 2,5-dihydroxypyridine.
    Kim SG; Novak RF
    Cancer Res; 1990 Sep; 50(17):5333-9. PubMed ID: 2167153
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of cytochrome P-450 isoenzymes in the bioactivation of hydroxy anthraquinones.
    Fratta D; Simi S; Rainaldi G; Gervasi PG
    Anticancer Res; 1994; 14(6B):2597-603. PubMed ID: 7872687
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 1-Hydroxyethyl radical formation during NADPH- and NADH-dependent oxidation of ethanol by human liver microsomes.
    Rao DN; Yang MX; Lasker JM; Cederbaum AI
    Mol Pharmacol; 1996 May; 49(5):814-21. PubMed ID: 8622631
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spin trapping of a free radical intermediate formed during microsomal metabolism of hydrazine.
    Noda A; Noda H; Ohno K; Sendo T; Misaka A; Kanazawa Y; Isobe R; Hirata M
    Biochem Biophys Res Commun; 1985 Dec; 133(3):1086-91. PubMed ID: 3002363
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.