These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

293 related articles for article (PubMed ID: 30246632)

  • 81. The transdermal revolution.
    Thomas BJ; Finnin BC
    Drug Discov Today; 2004 Aug; 9(16):697-703. PubMed ID: 15341783
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Nanodesign of olein vesicles for the topical delivery of the antioxidant resveratrol.
    Pando D; Caddeo C; Manconi M; Fadda AM; Pazos C
    J Pharm Pharmacol; 2013 Aug; 65(8):1158-67. PubMed ID: 23837583
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Perspectives of Lipid-Based Drug Carrier Systems for Transdermal Delivery.
    Pradhan M; Srivastava S; Singh D; Saraf S; Saraf S; Singh MR
    Crit Rev Ther Drug Carrier Syst; 2018; 35(4):331-367. PubMed ID: 29972681
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Nanovesicular carrier-mediated transdermal delivery of tadalafil: i-formulation and physicsochemical characterization.
    Mehanna MM; Motawaa AM; Samaha MW
    Drug Dev Ind Pharm; 2015 May; 41(5):714-21. PubMed ID: 24669976
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Development of a nanogel formulation for transdermal delivery of tenoxicam: a pharmacokinetic-pharmacodynamic modeling approach for quantitative prediction of skin absorption.
    Elkomy MH; El Menshawe SF; Eid HM; Ali AM
    Drug Dev Ind Pharm; 2017 Apr; 43(4):531-544. PubMed ID: 27910712
    [TBL] [Abstract][Full Text] [Related]  

  • 86. An in vitro and in vivo comparison of solid and liquid-oil cores in transdermal aconitine nanocarriers.
    Zhang YT; Wu ZH; Zhang K; Zhao JH; Ye BN; Feng NP
    J Pharm Sci; 2014 Nov; 103(11):3602-3610. PubMed ID: 25187419
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Vesicles as tools for the modulation of skin permeability.
    Dubey V; Mishra D; Nahar M; Jain NK
    Expert Opin Drug Deliv; 2007 Nov; 4(6):579-93. PubMed ID: 17970662
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Enhanced transdermal delivery of lornoxicam by nanostructured lipid carrier gels modified with polyarginine peptide for treatment of carrageenan-induced rat paw edema.
    Gao S; Tian B; Han J; Zhang J; Shi Y; Lv Q; Li K
    Int J Nanomedicine; 2019; 14():6135-6150. PubMed ID: 31447556
    [No Abstract]   [Full Text] [Related]  

  • 89. Ethosomes as Vesicles for Effective Transdermal Delivery: From Bench to Clinical Implementation.
    Akhtar N; Varma A; Pathak K
    Curr Clin Pharmacol; 2016; 11(3):168-190. PubMed ID: 27526697
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Nanoparticles in drug delivery: mechanism of action, formulation and clinical application towards reduction in drug-associated nephrotoxicity.
    Cooper DL; Conder CM; Harirforoosh S
    Expert Opin Drug Deliv; 2014 Oct; 11(10):1661-80. PubMed ID: 25054316
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Colloidal carriers for the enhanced delivery through the skin.
    Cosco D; Celia C; Cilurzo F; Trapasso E; Paolino D
    Expert Opin Drug Deliv; 2008 Jul; 5(7):737-55. PubMed ID: 18590459
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Enhanced topical penetration, system exposure and anti-psoriasis activity of two particle-sized, curcumin-loaded PLGA nanoparticles in hydrogel.
    Sun L; Liu Z; Wang L; Cun D; Tong HHY; Yan R; Chen X; Wang R; Zheng Y
    J Control Release; 2017 May; 254():44-54. PubMed ID: 28344018
    [TBL] [Abstract][Full Text] [Related]  

  • 93. New nanosized technologies for dermal and transdermal drug delivery. A review.
    Schroeter A; Engelbrecht T; Neubert RH; Goebel AS
    J Biomed Nanotechnol; 2010 Oct; 6(5):511-28. PubMed ID: 21329045
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Silk Nanocarrier with Tunable Size to Improve Transdermal Capacity for Hydrophilic and Hydrophobic Drugs.
    Wang X; Liu K; Fu S; Wu X; Xiao L; Yang Y; Zhang Z; Lu Q
    ACS Appl Bio Mater; 2023 Jan; 6(1):74-82. PubMed ID: 36603189
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Turning theory into practice: the development of modern transdermal drug delivery systems and future trends.
    Perumal O; Murthy SN; Kalia YN
    Skin Pharmacol Physiol; 2013; 26(4-6):331-42. PubMed ID: 23921120
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Transdermal innovations in diabetes management.
    Rao R; Mahant S; Chhabra L; Nanda S
    Curr Diabetes Rev; 2014; 10(6):343-59. PubMed ID: 25418713
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Transdermal Drug Delivery: Opportunities and Challenges for Controlled Delivery of Therapeutic Agents Using Nanocarriers.
    Kurmi BD; Tekchandani P; Paliwal R; Paliwal SR
    Curr Drug Metab; 2017; 18(5):481-495. PubMed ID: 28228076
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Biopolymers as transdermal drug delivery systems in dermatology therapy.
    Basavaraj KH; Johnsy G; Navya MA; Rashmi R; Siddaramaiah
    Crit Rev Ther Drug Carrier Syst; 2010; 27(2):155-85. PubMed ID: 20499487
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Heat effects on drug delivery across human skin.
    Hao J; Ghosh P; Li SK; Newman B; Kasting GB; Raney SG
    Expert Opin Drug Deliv; 2016; 13(5):755-68. PubMed ID: 26808472
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Transdermal patches: Design and current approaches to painless drug delivery.
    Al Hanbali OA; Khan HMS; Sarfraz M; Arafat M; Ijaz S; Hameed A
    Acta Pharm; 2019 Jun; 69(2):197-215. PubMed ID: 31259729
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.