These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
140 related articles for article (PubMed ID: 30246646)
21. Computational study of the blood flow in three types of 3D hollow fiber membrane bundles. Zhang J; Chen X; Ding J; Fraser KH; Taskin ME; Griffith BP; Wu ZJ J Biomech Eng; 2013 Dec; 135(12):121009. PubMed ID: 24141394 [TBL] [Abstract][Full Text] [Related]
22. Experimental validation of a computational fluid dynamics model using micro-particle image velocimetry of the irrigation flow in confluent canals. Rito Pereira M; Silva G; Semiao V; Silverio V; Martins JNR; Pascoal-Faria P; Alves N; Dias JR; Ginjeira A Int Endod J; 2022 Dec; 55(12):1394-1403. PubMed ID: 36040378 [TBL] [Abstract][Full Text] [Related]
23. Micro-bubble flow simulation of dissolved air flotation process for water treatment using computational fluid dynamics technique. Lee KH; Kim H; KuK JW; Chung JD; Park S; Kwon EE Environ Pollut; 2020 Jan; 256():112050. PubMed ID: 31481270 [TBL] [Abstract][Full Text] [Related]
24. CFD simulation of the aeration process and baffle influence in a full-scale commercial flat sheet module. Cao Y; Gu B; Sonnenburg A; Urban W Water Sci Technol; 2020 May; 81(9):2004-2010. PubMed ID: 32666953 [TBL] [Abstract][Full Text] [Related]
25. Development of a System for Measuring Wall Shear Stress in Blood Vessels using Magnetic Resonance Imaging and Computational Fluid Dynamics. Yoshida K; Nagao T; Okada K; Miyazaki S; Yang X; Yamazaki Y; Murase K Igaku Butsuri; 2008; 27(3):136-49. PubMed ID: 18367824 [TBL] [Abstract][Full Text] [Related]
26. Direct contact membrane distillation for the concentration of saline dairy effluent. Kezia K; Lee J; Weeks M; Kentish S Water Res; 2015 Sep; 81():167-77. PubMed ID: 26057264 [TBL] [Abstract][Full Text] [Related]
27. Computational fluid dynamics simulation and the experimental verification of protein adsorption on a hollow fiber membranes module. Wu J; Wei Y; Li S; Zhou J; Xu Z J Chromatogr A; 2023 Jan; 1687():463706. PubMed ID: 36521242 [TBL] [Abstract][Full Text] [Related]
28. Experimental and CFD simulation studies of wall shear stress for different impeller configurations and MBR activated sludge. Ratkovich N; Chan CC; Bentzen TR; Rasmussen MR Water Sci Technol; 2012; 65(11):2061-70. PubMed ID: 22592479 [TBL] [Abstract][Full Text] [Related]
29. Formation of Vortices in Idealised Branching Vessels: A CFD Benchmark Study. Xue Y; Hellmuth R; Shin DH Cardiovasc Eng Technol; 2020 Oct; 11(5):544-559. PubMed ID: 32666327 [TBL] [Abstract][Full Text] [Related]
30. Meshfree simulations of ultrasound vector flow imaging using smoothed particle hydrodynamics. Shahriari S; Garcia D Phys Med Biol; 2018 Oct; 63(20):205011. PubMed ID: 30247153 [TBL] [Abstract][Full Text] [Related]
31. Computational fluid dynamics simulation to compare large volume irrigation and continuous spraying during nasal irrigation. de Gabory L; Kérimian M; Baux Y; Boisson N; Bordenave L Int Forum Allergy Rhinol; 2020 Jan; 10(1):41-48. PubMed ID: 31589813 [TBL] [Abstract][Full Text] [Related]
32. Validation of numerical simulation methods in aortic arch using 4D Flow MRI. Miyazaki S; Itatani K; Furusawa T; Nishino T; Sugiyama M; Takehara Y; Yasukochi S Heart Vessels; 2017 Aug; 32(8):1032-1044. PubMed ID: 28444501 [TBL] [Abstract][Full Text] [Related]
33. Assessment of boundary conditions for CFD simulation in human carotid artery. Xu P; Liu X; Zhang H; Ghista D; Zhang D; Shi C; Huang W Biomech Model Mechanobiol; 2018 Dec; 17(6):1581-1597. PubMed ID: 29982960 [TBL] [Abstract][Full Text] [Related]
34. Investigation of backwashing effectiveness in membrane bioreactor (MBR) based on different membrane fouling stages. Cui Z; Wang J; Zhang H; Ngo HH; Jia H; Guo W; Gao F; Yang G; Kang D Bioresour Technol; 2018 Dec; 269():355-362. PubMed ID: 30195993 [TBL] [Abstract][Full Text] [Related]
35. Hydrodynamic and Performance Evaluation of a Porous Ceramic Membrane Module Used on the Water-Oil Separation Process: An Investigation by CFD. Oliveira Neto GL; Oliveira NGN; Delgado JMPQ; Nascimento LPC; Magalhães HLF; Oliveira PL; Gomez RS; Farias Neto SR; Lima AGB Membranes (Basel); 2021 Feb; 11(2):. PubMed ID: 33567608 [TBL] [Abstract][Full Text] [Related]
36. CFD validation using in-vitro MRI velocity data - Methods for data matching and CFD error quantification. Wüstenhagen C; John K; Langner S; Brede M; Grundmann S; Bruschewski M Comput Biol Med; 2021 Apr; 131():104230. PubMed ID: 33545507 [TBL] [Abstract][Full Text] [Related]
37. Left Ventricular Assist Device Flow Pattern Analysis Using a Novel Model Incorporating Left Ventricular Pulsatility. Grinstein J; Torii R; Bourantas CV; Garcia-Garcia HM ASAIO J; 2021 Jul; 67(7):724-732. PubMed ID: 33528162 [TBL] [Abstract][Full Text] [Related]
38. Numerical simulation of landfill aeration using computational fluid dynamics. Fytanidis DK; Voudrias EA Waste Manag; 2014 Apr; 34(4):804-16. PubMed ID: 24525420 [TBL] [Abstract][Full Text] [Related]
39. Numerical Approach to Study the Behavior of an Artificial Ventricle: Fluid-Structure Interaction Followed By Fluid Dynamics With Moving Boundaries. Luraghi G; Wu W; De Castilla H; Rodriguez Matas JF; Dubini G; Dubuis P; Grimmé M; Migliavacca F Artif Organs; 2018 Oct; 42(10):E315-E324. PubMed ID: 30298937 [TBL] [Abstract][Full Text] [Related]
40. Predicting flow in aortic dissection: comparison of computational model with PC-MRI velocity measurements. Cheng Z; Juli C; Wood NB; Gibbs RG; Xu XY Med Eng Phys; 2014 Sep; 36(9):1176-84. PubMed ID: 25070022 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]