These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 30246825)

  • 1. Charged impurity-tuning of midgap states in biased Bernal bilayer black phosphorus: an anisotropic electronic phase transition.
    Le PTT; Mirabbaszadeh K; Davoudiniya M; Yarmohammadi M
    Phys Chem Chem Phys; 2018 Oct; 20(38):25044-25051. PubMed ID: 30246825
    [TBL] [Abstract][Full Text] [Related]  

  • 2. β
    Le PTT; Phong TC; Yarmohammadi M
    Phys Chem Chem Phys; 2019 Oct; 21(39):21790-21797. PubMed ID: 31573022
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modified tailoring the electronic phase and emergence of midstates in impurity-imbrued armchair graphene nanoribbons.
    Hien ND; Mirabbaszadeh K; Davoudiniya M; Hoi BD; Phuong LTT; Yarmohammadi M
    Sci Rep; 2019 Jul; 9(1):10651. PubMed ID: 31337797
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interplay of orbital hopping and perpendicular magnetic field in anisotropic phase transitions for Bernal bilayer graphene and hexagonal boron-nitride.
    T T Le P; Davoudiniya M; Yarmohammadi M
    Phys Chem Chem Phys; 2018 Dec; 21(1):238-245. PubMed ID: 30519687
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tuning electronic phase in noncentrosymmetric quantum spin Hall insulators through physical stimuli.
    Phong TC; Lam VT; Hoi BD
    J Phys Condens Matter; 2021 Jun; 33(32):. PubMed ID: 34044386
    [TBL] [Abstract][Full Text] [Related]  

  • 6. 2D MATERIALS. Observation of tunable band gap and anisotropic Dirac semimetal state in black phosphorus.
    Kim J; Baik SS; Ryu SH; Sohn Y; Park S; Park BG; Denlinger J; Yi Y; Choi HJ; Kim KS
    Science; 2015 Aug; 349(6249):723-6. PubMed ID: 26273052
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electric field and charged impurity doping effects on the Schottky anomaly of β
    Hoi BD; Tung LV; Vinh PT; Khoa DQ; T T Phuong L
    Phys Chem Chem Phys; 2021 Jan; 23(3):2080-2087. PubMed ID: 33434258
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Impurities in a biased graphene bilayer.
    Nilsson J; Castro Neto AH
    Phys Rev Lett; 2007 Mar; 98(12):126801. PubMed ID: 17501147
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The stacking dependent electronic structure and optical properties of bilayer black phosphorus.
    Shu H; Li Y; Niu X; Wang J
    Phys Chem Chem Phys; 2016 Feb; 18(8):6085-91. PubMed ID: 26845322
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electronic properties of a biased graphene bilayer.
    Castro EV; Novoselov KS; Morozov SV; Peres NM; Lopes dos Santos JM; Nilsson J; Guinea F; Geim AK; Castro Neto AH
    J Phys Condens Matter; 2010 May; 22(17):175503. PubMed ID: 21393670
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transition metal chalcogenides: ultrathin inorganic materials with tunable electronic properties.
    Heine T
    Acc Chem Res; 2015 Jan; 48(1):65-72. PubMed ID: 25489917
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantum transport along the armchair and zigzag edges of β
    Davoudiniya M; Mirabbaszadeh K
    Phys Chem Chem Phys; 2021 Dec; 23(46):26285-26295. PubMed ID: 34787129
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tunable band gap in hydrogenated bilayer graphene.
    Samarakoon DK; Wang XQ
    ACS Nano; 2010 Jul; 4(7):4126-30. PubMed ID: 20536219
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Strain and electric field co-modulation of electronic properties of bilayer boronitrene.
    Wang RN; Yang M; Dong GY; Wang SF; Fu GS; Wang JL
    J Phys Condens Matter; 2016 Feb; 28(5):055302. PubMed ID: 26760530
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Impurity scattering effects on the validity of Fermi liquid theory in topological crystalline insulator SnTe (001) thin films.
    Hoa LT; Phong TC; Hoi BD
    Phys Chem Chem Phys; 2020 Jun; 22(24):13613-13621. PubMed ID: 32515759
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pressure-Induced Electronic Transition in Black Phosphorus.
    Xiang ZJ; Ye GJ; Shang C; Lei B; Wang NZ; Yang KS; Liu DY; Meng FB; Luo XG; Zou LJ; Sun Z; Zhang Y; Chen XH
    Phys Rev Lett; 2015 Oct; 115(18):186403. PubMed ID: 26565480
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thermal conduction in single-layer black phosphorus: highly anisotropic?
    Jiang JW
    Nanotechnology; 2015 Feb; 26(5):055701. PubMed ID: 25571869
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of strain and electric fields on the electronic transport properties of single-layer β
    Davoudiniya M; Mirabbaszadeh K
    Phys Chem Chem Phys; 2021 Sep; 23(34):18647-18658. PubMed ID: 34612402
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electron-Transport Properties of Few-Layer Black Phosphorus.
    Xu Y; Dai J; Zeng XC
    J Phys Chem Lett; 2015 Jun; 6(11):1996-2002. PubMed ID: 26266491
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Photoluminescence quenching and charge transfer in artificial heterostacks of monolayer transition metal dichalcogenides and few-layer black phosphorus.
    Yuan J; Najmaei S; Zhang Z; Zhang J; Lei S; M Ajayan P; Yakobson BI; Lou J
    ACS Nano; 2015 Jan; 9(1):555-63. PubMed ID: 25569715
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.