These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 30246881)

  • 1. A Data-Driven Approach to Assessing Supply Inadequacy Risks Due to Climate-Induced Shifts in Electricity Demand.
    Mukherjee S; Nateghi R
    Risk Anal; 2019 Mar; 39(3):673-694. PubMed ID: 30246881
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of Climate Change on Capacity Expansion Decisions of an Electricity Generation Fleet in the Southeast U.S.
    Ralston Fonseca F; Craig M; Jaramillo P; Bergés M; Severnini E; Loew A; Zhai H; Cheng Y; Nijssen B; Voisin N; Yearsley J
    Environ Sci Technol; 2021 Feb; 55(4):2522-2531. PubMed ID: 33497216
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Climate, weather, socio-economic and electricity usage data for the residential and commercial sectors in FL, U.S.
    Mukhopadhyay S; Nateghi R
    Data Brief; 2017 Aug; 13():192-195. PubMed ID: 28616450
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Climate change is projected to have severe impacts on the frequency and intensity of peak electricity demand across the United States.
    Auffhammer M; Baylis P; Hausman CH
    Proc Natl Acad Sci U S A; 2017 Feb; 114(8):1886-1891. PubMed ID: 28167756
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A multi-paradigm framework to assess the impacts of climate change on end-use energy demand.
    Nateghi R; Mukherjee S
    PLoS One; 2017; 12(11):e0188033. PubMed ID: 29155862
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effectiveness of a segmental approach to climate policy.
    Trancik JE; Chang MT; Karapataki C; Stokes LC
    Environ Sci Technol; 2014; 48(1):27-35. PubMed ID: 24328118
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Climate-Induced Tradeoffs in Planning and Operating Costs of a Regional Electricity System.
    Ralston Fonseca F; Craig M; Jaramillo P; Bergés M; Severnini E; Loew A; Zhai H; Cheng Y; Nijssen B; Voisin N; Yearsley J
    Environ Sci Technol; 2021 Aug; 55(16):11204-11215. PubMed ID: 34342972
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Climate-Water Adaptation for Future US Electricity Infrastructure.
    Miara A; Cohen SM; Macknick J; Vörösmarty CJ; Corsi F; Sun Y; Tidwell VC; Newmark R; Fekete BM
    Environ Sci Technol; 2019 Dec; 53(23):14029-14040. PubMed ID: 31746591
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A novel method for acquiring rigorous temperature response functions for electricity demand at a regional scale.
    Hiruta Y; Gao L; Ashina S
    Sci Total Environ; 2022 May; 819():152893. PubMed ID: 34995597
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Remote work and climate change: Considerations for grid resilience in the 21st century.
    Ratner J; Westfallen V; Aguilar S; Schlegelmilch J
    J Bus Contin Emer Plan; 2022 Jan; 16(1):53-61. PubMed ID: 35996299
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Response of China's electricity consumption to climate change using monthly household data.
    Hou JJ; Liu LC; Dong ZY; Wang Z; Yu SW; Zhang JT
    Environ Sci Pollut Res Int; 2022 Dec; 29(60):90272-90289. PubMed ID: 35867294
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Climate impacts on European agriculture and water management in the context of adaptation and mitigation--the importance of an integrated approach.
    Falloon P; Betts R
    Sci Total Environ; 2010 Nov; 408(23):5667-87. PubMed ID: 19501386
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Climate Change Adaptation through the Water-Energy-Food Nexus in Southern Africa.
    Mpandeli S; Naidoo D; Mabhaudhi T; Nhemachena C; Nhamo L; Liphadzi S; Hlahla S; Modi AT
    Int J Environ Res Public Health; 2018 Oct; 15(10):. PubMed ID: 30347771
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Resilience of the Eastern African electricity sector to climate driven changes in hydropower generation.
    Sridharan V; Broad O; Shivakumar A; Howells M; Boehlert B; Groves DG; Rogner HH; Taliotis C; Neumann JE; Strzepek KM; Lempert R; Joyce B; Huber-Lee A; Cervigni R
    Nat Commun; 2019 Jan; 10(1):302. PubMed ID: 30655521
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Drought and climate change impacts on cooling water shortages and electricity prices in Great Britain.
    Byers EA; Coxon G; Freer J; Hall JW
    Nat Commun; 2020 May; 11(1):2239. PubMed ID: 32382016
    [TBL] [Abstract][Full Text] [Related]  

  • 16. North-south polarization of European electricity consumption under future warming.
    Wenz L; Levermann A; Auffhammer M
    Proc Natl Acad Sci U S A; 2017 Sep; 114(38):E7910-E7918. PubMed ID: 28847939
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Climate change impacts on the energy system: a review of trends and gaps.
    Cronin J; Anandarajah G; Dessens O
    Clim Change; 2018; 151(2):79-93. PubMed ID: 30930505
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Impact of Climate Change on the Food System in Toronto.
    Zeuli K; Nijhuis A; Macfarlane R; Ridsdale T
    Int J Environ Res Public Health; 2018 Oct; 15(11):. PubMed ID: 30355969
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Energy security impacts of a severe drought on the future Finnish energy system.
    Jääskeläinen J; Veijalainen N; Syri S; Marttunen M; Zakeri B
    J Environ Manage; 2018 Jul; 217():542-554. PubMed ID: 29635187
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The critical role of humidity in modeling summer electricity demand across the United States.
    Maia-Silva D; Kumar R; Nateghi R
    Nat Commun; 2020 Apr; 11(1):1686. PubMed ID: 32245945
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.