These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 30247142)

  • 1. In vivo biosynthesis and spatial distribution of Ag nanoparticles in maize (
    Tong X; Guo N; Dang Z; Ren Q; Shen H
    IET Nanobiotechnol; 2018 Oct; 12(7):987-993. PubMed ID: 30247142
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biosynthesis of Ag nanoparticles and two-dimensional element distribution in Arabidopsis.
    Xu H; Yu T; Fu Y; Dang Z; Wang L; Xie S; Chang F; Shen H; Ren Q
    IET Nanobiotechnol; 2020 Jun; 14(4):325-330. PubMed ID: 32463023
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Speciation Matters: Bioavailability of Silver and Silver Sulfide Nanoparticles to Alfalfa (Medicago sativa).
    Stegemeier JP; Schwab F; Colman BP; Webb SM; Newville M; Lanzirotti A; Winkler C; Wiesner MR; Lowry GV
    Environ Sci Technol; 2015 Jul; 49(14):8451-60. PubMed ID: 26106801
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Xylem- and phloem-based transport of CuO nanoparticles in maize (Zea mays L.).
    Wang Z; Xie X; Zhao J; Liu X; Feng W; White JC; Xing B
    Environ Sci Technol; 2012 Apr; 46(8):4434-41. PubMed ID: 22435775
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In vivo phytotoxicity, uptake, and translocation of PbS nanoparticles in maize (Zea mays L.) plants.
    Ullah H; Li X; Peng L; Cai Y; Mielke HW
    Sci Total Environ; 2020 Oct; 737():139558. PubMed ID: 32512294
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reducing strength prevailing at root surface of plants promotes reduction of Ag+ and generation of Ag(0)/Ag2O nanoparticles exogenously in aqueous phase.
    Pardha-Saradhi P; Yamal G; Peddisetty T; Sharmila P; Nagar S; Singh J; Nagarajan R; Rao KS
    PLoS One; 2014; 9(9):e106715. PubMed ID: 25184239
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation of developmental responses of two crop plants exposed to silver and zinc oxide nanoparticles.
    Pokhrel LR; Dubey B
    Sci Total Environ; 2013 May; 452-453():321-32. PubMed ID: 23532040
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Physiological and metabolic responses of maize (Zea mays) plants to Fe
    Yan L; Li P; Zhao X; Ji R; Zhao L
    Sci Total Environ; 2020 May; 718():137400. PubMed ID: 32105936
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Foliar spray of TiO
    Lian J; Zhao L; Wu J; Xiong H; Bao Y; Zeb A; Tang J; Liu W
    Chemosphere; 2020 Jan; 239():124794. PubMed ID: 31521929
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interaction of different-sized ZnO nanoparticles with maize (Zea mays): Accumulation, biotransformation and phytotoxicity.
    Lv Z; Sun H; Du W; Li R; Mao H; Kopittke PM
    Sci Total Environ; 2021 Nov; 796():148927. PubMed ID: 34271385
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bioreduction potentials of dried root of Zingiber officinale for a simple green synthesis of silver nanoparticles: Antibacterial studies.
    Judith Vijaya J; Jayaprakash N; Kombaiah K; Kaviyarasu K; John Kennedy L; Jothi Ramalingam R; Al-Lohedan HA; V M MA; Maaza M
    J Photochem Photobiol B; 2017 Dec; 177():62-68. PubMed ID: 29069633
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Silver and gold nanoparticles in plants: sites for the reduction to metal.
    Beattie IR; Haverkamp RG
    Metallomics; 2011 Jun; 3(6):628-32. PubMed ID: 21611658
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Gum kondagogu reduced/stabilized silver nanoparticles as direct colorimetric sensor for the sensitive detection of Hg²⁺ in aqueous system.
    Rastogi L; Sashidhar RB; Karunasagar D; Arunachalam J
    Talanta; 2014 Jan; 118():111-7. PubMed ID: 24274277
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mapping of the spatial distribution of silver nanoparticles in root tissues of Vicia faba by laser-induced breakdown spectroscopy (LIBS).
    Krajcarová L; Novotný K; Kummerová M; Dubová J; Gloser V; Kaiser J
    Talanta; 2017 Oct; 173():28-35. PubMed ID: 28602188
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of exposure pathways on the accumulation and phytotoxicity of silver nanoparticles in soybean and rice.
    Li CC; Dang F; Li M; Zhu M; Zhong H; Hintelmann H; Zhou DM
    Nanotoxicology; 2017 Jun; 11(5):699-709. PubMed ID: 28627335
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Facile green synthesis of silver nanoparticles using seed aqueous extract of Pistacia atlantica and its antibacterial activity.
    Sadeghi B; Rostami A; Momeni SS
    Spectrochim Acta A Mol Biomol Spectrosc; 2015 Jan; 134():326-32. PubMed ID: 25022505
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biogenic synthesis and spatial distribution of silver nanoparticles in the legume mungbean plant (Vigna radiata L.).
    Kumari R; Singh JS; Singh DP
    Plant Physiol Biochem; 2017 Jan; 110():158-166. PubMed ID: 27291836
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Uptake and cellular distribution, in four plant species, of fluorescently labeled mesoporous silica nanoparticles.
    Sun D; Hussain HI; Yi Z; Siegele R; Cresswell T; Kong L; Cahill DM
    Plant Cell Rep; 2014 Aug; 33(8):1389-402. PubMed ID: 24820127
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Assessment of the Phytotoxicity of Metal Oxide Nanoparticles on Two Crop Plants, Maize (Zea mays L.) and Rice (Oryza sativa L.).
    Yang Z; Chen J; Dou R; Gao X; Mao C; Wang L
    Int J Environ Res Public Health; 2015 Nov; 12(12):15100-9. PubMed ID: 26633437
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Potential Threat of Lead Oxide Nanoparticles for Food Crops: Comprehensive Understanding of the Impacts of Different Nanosized PbO
    Li X; Peng L; Cai Y; He F; Zhou Q; Shi D
    J Agric Food Chem; 2023 Mar; 71(10):4235-4248. PubMed ID: 36854048
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.