BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

84 related articles for article (PubMed ID: 30247153)

  • 1. Meshfree simulations of ultrasound vector flow imaging using smoothed particle hydrodynamics.
    Shahriari S; Garcia D
    Phys Med Biol; 2018 Oct; 63(20):205011. PubMed ID: 30247153
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An alternative smooth particle hydrodynamics formulation to simulate chemotaxis in porous media.
    Avesani D; Dumbser M; Chiogna G; Bellin A
    J Math Biol; 2017 Apr; 74(5):1037-1058. PubMed ID: 27568012
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Smoothed particle hydrodynamics based FSI simulation of the native and mechanical heart valves in a patient-specific aortic model.
    Laha S; Fourtakas G; Das PK; Keshmiri A
    Sci Rep; 2024 Mar; 14(1):6762. PubMed ID: 38514703
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Analysis of fluid force and flow fields during gliding in swimming using smoothed particle hydrodynamics method.
    Liu MM; Yu CW; Meng QH; Hao XF; Chen ZL; He M
    Front Bioeng Biotechnol; 2024; 12():1355617. PubMed ID: 38846802
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Smoothed particle hydrodynamics method applied to oral region: A narrative review.
    Onuma H; Inokoshi M; Minakuchi S
    Dent Mater J; 2023 Nov; 42(6):759-765. PubMed ID: 37940557
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reliability analysis using Limit equilibrium and Smoothed Particle Hydrodynamics-based method for homogeneous soil slopes.
    Chu X; Wen J; Li L
    PLoS One; 2024; 19(3):e0300293. PubMed ID: 38466668
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Shape-driven deep neural networks for fast acquisition of aortic 3D pressure and velocity flow fields.
    Pajaziti E; Montalt-Tordera J; Capelli C; Sivera R; Sauvage E; Quail M; Schievano S; Muthurangu V
    PLoS Comput Biol; 2023 Apr; 19(4):e1011055. PubMed ID: 37093855
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A novel mono-physics particle-based approach for the simulation of cardiovascular fluid-structure interaction problems.
    Monteleone A; Di Leonardo S; Napoli E; Burriesci G
    Comput Methods Programs Biomed; 2024 Mar; 245():108034. PubMed ID: 38244340
    [TBL] [Abstract][Full Text] [Related]  

  • 9. SPH simulations and experimental investigation of water flow through a Venturi meter of rectangular cross-section.
    Sigalotti LDG; Alvarado-Rodríguez CE; Aragón F; Álvarez Salazar VS; Carvajal-Mariscal I; Real Ramirez CA; Gonzalez-Trejo J; Klapp J
    Sci Rep; 2023 Dec; 13(1):21215. PubMed ID: 38040955
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Practical implications of the erroneous treatment of exposure time in the Eulerian hemolysis power law model.
    Faghih MM; Craven BA; Sharp MK
    Artif Organs; 2023 Sep; 47(9):1531-1538. PubMed ID: 37032625
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Adaptive design of experiments to fit surrogate Gaussian process regression models allows fast sensitivity analysis of the input waveform for patient-specific 3D CFD models of liver radioembolization.
    Bomberna T; Maleux G; Debbaut C
    Comput Methods Programs Biomed; 2024 Jul; 252():108234. PubMed ID: 38823206
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spatiotemporal Analysis of Particle Spread to Assess the Hybrid Particle-Flow CFD Model of Radioembolization of HCC Tumors.
    Bomberna T; Vermijs S; Bonne L; Verslype C; Maleux G; Debbaut C
    IEEE Trans Biomed Eng; 2024 Apr; 71(4):1219-1227. PubMed ID: 37938948
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Current Loop Model for the Fast Simulation of Ferrofluids.
    Shao H; Huang L; Michels DL
    IEEE Trans Vis Comput Graph; 2023 Dec; 29(12):5394-5405. PubMed ID: 36191100
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Visualisation of Droplet Flow Induced by Ultrasonic Dental Cleaning.
    Shu H; Yu X; Zhu X; Zhang F; He J; Duan X; Liu M; Li J; Yang W; Zhao J
    Int Dent J; 2024 Aug; 74(4):876-883. PubMed ID: 38238210
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An improved Smoothed Particle Hydrodynamics (SPH) method for modelling the cracking processes of teeth and its applications.
    Yu S; Sun Z; Ren X; Zhang J; Yu J; Zhang W
    J Mech Behav Biomed Mater; 2022 Dec; 136():105518. PubMed ID: 36265277
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hybrid molecular-continuum simulations using smoothed dissipative particle dynamics.
    Petsev ND; Leal LG; Shell MS
    J Chem Phys; 2015 Jan; 142(4):044101. PubMed ID: 25637963
    [TBL] [Abstract][Full Text] [Related]  

  • 17. SIMUS3: An open-source simulator for 3-D ultrasound imaging.
    Garcia D; Varray F
    Comput Methods Programs Biomed; 2024 Jun; 250():108169. PubMed ID: 38643604
    [TBL] [Abstract][Full Text] [Related]  

  • 18. MRI Derived Simulations of Flow Patterns in the Stomach.
    Hosseini S; Palmada N; Avci R; Suresh V; Cheng LK
    Annu Int Conf IEEE Eng Med Biol Soc; 2023 Jul; 2023():1-4. PubMed ID: 38083297
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A hybrid formalism combining fluctuating hydrodynamics and generalized Langevin dynamics for the simulation of nanoparticle thermal motion in an incompressible fluid medium.
    Uma B; Eckmann DM; Ayyaswamy PS; Radhakrishnan R
    Mol Phys; 2012; 110(11-12):1057-1067. PubMed ID: 22865935
    [TBL] [Abstract][Full Text] [Related]  

  • 20. DualFluidNet: An attention-based dual-pipeline network for fluid simulation.
    Chen Y; Zheng S; Jin M; Chang Y; Wang N
    Neural Netw; 2024 Sep; 177():106401. PubMed ID: 38805793
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.