These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 30247153)

  • 21. Deformation of Soft Tissue and Force Feedback Using the Smoothed Particle Hydrodynamics.
    Liu X; Wang R; Li Y; Song D
    Comput Math Methods Med; 2015; 2015():598415. PubMed ID: 26417380
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Toward a real-time simulation of ultrasound image sequences based on a 3-D set of moving scatterers.
    Marion A; Vray D
    IEEE Trans Ultrason Ferroelectr Freq Control; 2009 Oct; 56(10):2167-79. PubMed ID: 19942504
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Multilaboratory particle image velocimetry analysis of the FDA benchmark nozzle model to support validation of computational fluid dynamics simulations.
    Hariharan P; Giarra M; Reddy V; Day SW; Manning KB; Deutsch S; Stewart SF; Myers MR; Berman MR; Burgreen GW; Paterson EG; Malinauskas RA
    J Biomech Eng; 2011 Apr; 133(4):041002. PubMed ID: 21428676
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Analysis of fluid force and flow fields during gliding in swimming using smoothed particle hydrodynamics method.
    Liu MM; Yu CW; Meng QH; Hao XF; Chen ZL; He M
    Front Bioeng Biotechnol; 2024; 12():1355617. PubMed ID: 38846802
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Cerebral blood flow in a healthy Circle of Willis and two intracranial aneurysms: computational fluid dynamics versus four-dimensional phase-contrast magnetic resonance imaging.
    Berg P; Stucht D; Janiga G; Beuing O; Speck O; Thévenin D
    J Biomech Eng; 2014 Apr; 136(4):. PubMed ID: 24292415
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Interactive blood simulation for virtual surgery based on smoothed particle hydrodynamics.
    Müller M; Schirm S; Teschner M
    Technol Health Care; 2004; 12(1):25-31. PubMed ID: 15096684
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Adding ecology to particle capture models: numerical simulations of capture on a moving cylinder in crossflow.
    Krick J; Ackerman JD
    J Theor Biol; 2015 Mar; 368():13-26. PubMed ID: 25496731
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Analysis of thoracic aorta hemodynamics using 3D particle tracking velocimetry and computational fluid dynamics.
    Gallo D; Gülan U; Di Stefano A; Ponzini R; Lüthi B; Holzner M; Morbiducci U
    J Biomech; 2014 Sep; 47(12):3149-55. PubMed ID: 25017300
    [TBL] [Abstract][Full Text] [Related]  

  • 29. SPH-based numerical simulations of flow slides in municipal solid waste landfills.
    Huang Y; Dai Z; Zhang W; Huang M
    Waste Manag Res; 2013 Mar; 31(3):256-64. PubMed ID: 23315367
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Simulations of dolphin kick swimming using smoothed particle hydrodynamics.
    Cohen RC; Cleary PW; Mason BR
    Hum Mov Sci; 2012 Jun; 31(3):604-19. PubMed ID: 21840077
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Particle Image Velocimetry Used to Qualitatively Validate Computational Fluid Dynamic Simulations in an Oxygenator: A Proof of Concept.
    Schlanstein PC; Hesselmann F; Jansen SV; Gemsa J; Kaufmann TA; Klaas M; Roggenkamp D; Schröder W; Schmitz-Rode T; Steinseifer U; Arens J
    Cardiovasc Eng Technol; 2015 Sep; 6(3):340-51. PubMed ID: 26577365
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Remeshed smoothed particle hydrodynamics simulation of the mechanical behavior of human organs.
    Hieber SE; Walther JH; Koumoutsakos P
    Technol Health Care; 2004; 12(4):305-14. PubMed ID: 15502281
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Smoothed-particle-hydrodynamics modeling of dissipation mechanisms in gravity waves.
    Colagrossi A; Souto-Iglesias A; Antuono M; Marrone S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Feb; 87(2):023302. PubMed ID: 23496634
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Comprehensive validation of computational fluid dynamics simulations of in-vivo blood flow in patient-specific cerebral aneurysms.
    Sun Q; Groth A; Aach T
    Med Phys; 2012 Feb; 39(2):742-54. PubMed ID: 22320784
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Two-way coupled SPH and particle level set fluid simulation.
    Losasso F; Talton J; Kwatra N; Fedkiw R
    IEEE Trans Vis Comput Graph; 2008; 14(4):797-804. PubMed ID: 18467755
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Computational modeling of MR flow imaging by the lattice Boltzmann method and Bloch equation.
    Jurczuk K; Kretowski M; Bellanger JJ; Eliat PA; Saint-Jalmes H; Bézy-Wendling J
    Magn Reson Imaging; 2013 Sep; 31(7):1163-73. PubMed ID: 23711475
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Computational fluid dynamics simulation of a-v fistulas: from MRI and ultrasound scans to numeric evaluation of hemodynamics.
    Niemann AK; Thrysoe S; Nygaard JV; Hasenkam JM; Petersen SE
    J Vasc Access; 2012; 13(1):36-44. PubMed ID: 21725950
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Reproduction of pressure field in ultrasonic-measurement-integrated simulation of blood flow.
    Funamoto K; Hayase T
    Int J Numer Method Biomed Eng; 2013 Jul; 29(7):726-40. PubMed ID: 23757190
    [TBL] [Abstract][Full Text] [Related]  

  • 39. PIV-measured versus CFD-predicted flow dynamics in anatomically realistic cerebral aneurysm models.
    Ford MD; Nikolov HN; Milner JS; Lownie SP; Demont EM; Kalata W; Loth F; Holdsworth DW; Steinman DA
    J Biomech Eng; 2008 Apr; 130(2):021015. PubMed ID: 18412502
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A method of ultrasonic 3-D computed velocimetry.
    Ogura Y; Katakura K; Okujima M
    IEEE Trans Biomed Eng; 1997 Sep; 44(9):823-30. PubMed ID: 9282474
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.