These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 30247486)

  • 1. Design and Use of an Apparatus for Quantifying Bivalve Suspension Feeding at Sea.
    Galimany E; Rose JM; Dixon MS; Alix R; Li Y; Wikfors GH
    J Vis Exp; 2018 Sep; (139):. PubMed ID: 30247486
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bivalve aquaculture-environment interactions in the context of climate change.
    Filgueira R; Guyondet T; Comeau LA; Tremblay R
    Glob Chang Biol; 2016 Dec; 22(12):3901-3913. PubMed ID: 27324415
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modelling bivalve culture - Eutrophication interactions in shallow coastal ecosystems.
    Lavaud R; Guyondet T; Filgueira R; Tremblay R; Comeau LA
    Mar Pollut Bull; 2020 Aug; 157():111282. PubMed ID: 32658665
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Bioremediation potential of Apostichopus japonicus (Selenka) in coastal bivalve suspension aquaculture system].
    Yuan XT; Yang HS; Zhou Y; Mao YZ; Xu Q; Wang LL
    Ying Yong Sheng Tai Xue Bao; 2008 Apr; 19(4):866-72. PubMed ID: 18593051
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Shellfish and residual chemical contaminants: hazards, monitoring, and health risk assessment along French coasts.
    Guéguen M; Amiard JC; Arnich N; Badot PM; Claisse D; Guérin T; Vernoux JP
    Rev Environ Contam Toxicol; 2011; 213():55-111. PubMed ID: 21541848
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Assessing benthic ecological impacts of bottom aquaculture using macrofaunal assemblages.
    Wang L; Fan Y; Yan C; Gao C; Xu Z; Liu X
    Mar Pollut Bull; 2017 Jan; 114(1):258-268. PubMed ID: 27667175
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Removal of Escherichia coli, Enterococcus fecalis, coliphage MS2, poliovirus, and hepatitis A virus from oysters (Crassostrea virginica) and hard shell clams (Mercinaria mercinaria) by depuration.
    Love DC; Lovelace GL; Sobsey MD
    Int J Food Microbiol; 2010 Oct; 143(3):211-7. PubMed ID: 20864199
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Grazing rate of zebra mussel in a shallow eutrophicated bay of the Baltic Sea.
    Oganjan K; Lauringson V
    Mar Environ Res; 2014 Dec; 102():43-50. PubMed ID: 24933437
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Great egret (Ardea alba) habitat selection and foraging behavior in a temperate estuary: Comparing natural wetlands to areas with shellfish aquaculture.
    Jennings S; Lumpkin D; Warnock N; Condeso TE; Kelly JP
    PLoS One; 2021; 16(12):e0261963. PubMed ID: 34972178
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influence of intertidal recreational fisheries and 'bouchot' mussel culture on bivalve recruitment.
    Toupoint N; Barbier P; Tremblay R; Archambault P; McKindsey CW; Winkler G; Meziane T; Olivier F
    Mar Environ Res; 2016 Jun; 117():1-12. PubMed ID: 27039134
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A feasibility study into the provision of Paralytic Shellfish Toxins laboratory reference materials by mass culture of Alexandrium and shellfish feeding experiments.
    Higman WA; Turner A
    Toxicon; 2010 Sep; 56(4):497-501. PubMed ID: 20493202
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Manila clam and Mediterranean mussel aquaculture is sustainable and a net carbon sink.
    Tamburini E; Turolla E; Lanzoni M; Moore D; Castaldelli G
    Sci Total Environ; 2022 Nov; 848():157508. PubMed ID: 35870589
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Re-emergence of Vibrio tubiashii in bivalve shellfish aquaculture: severity, environmental drivers, geographic extent and management.
    Elston RA; Hasegawa H; Humphrey KL; Polyak IK; Häse CC
    Dis Aquat Organ; 2008 Nov; 82(2):119-34. PubMed ID: 19149375
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Physiological responses of scallops and mussels to environmental variability: Implications for future shellfish aquaculture.
    Alma L; Fiamengo CJ; Alin SR; Jackson M; Hiromoto K; Padilla-Gamiño JL
    Mar Pollut Bull; 2023 Sep; 194(Pt B):115356. PubMed ID: 37633025
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microencapsulated algal feeds as a sustainable replacement diet for broodstock in commercial bivalve aquaculture.
    Willer DF; Furse S; Aldridge DC
    Sci Rep; 2020 Jul; 10(1):12577. PubMed ID: 32737351
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Feeding mechanics as the basis for differential uptake of the neurotoxin domoic acid by oysters, Crassostrea virginica, and mussels, Mytilus edulis.
    Mafra LL; Bricelj VM; Ouellette C; Bates SS
    Aquat Toxicol; 2010 Apr; 97(2):160-71. PubMed ID: 20153533
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Climate Change and Bivalve Mass Mortality in Temperate Regions.
    Soon TK; Zheng H
    Rev Environ Contam Toxicol; 2020; 251():109-129. PubMed ID: 31289937
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Informing Marine Spatial Planning (MSP) with numerical modelling: A case-study on shellfish aquaculture in Malpeque Bay (Eastern Canada).
    Filgueira R; Guyondet T; Bacher C; Comeau LA
    Mar Pollut Bull; 2015 Nov; 100(1):200-216. PubMed ID: 26371845
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Application of rapid test kits for the determination of Amnesic Shellfish Poisoning in bivalve molluscs from Great Britain.
    Johnson S; Harrison K; Turner AD
    Toxicon; 2016 Jul; 117():76-83. PubMed ID: 27070387
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Accumulation of metal-based nanoparticles in marine bivalve mollusks from offshore aquaculture as detected by single particle ICP-MS.
    Xu L; Wang Z; Zhao J; Lin M; Xing B
    Environ Pollut; 2020 May; 260():114043. PubMed ID: 32041024
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.