BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 30247633)

  • 1. PRESM: personalized reference editor for somatic mutation discovery in cancer genomics.
    Cao C; Mak L; Jin G; Gordon P; Ye K; Long Q
    Bioinformatics; 2019 May; 35(9):1445-1452. PubMed ID: 30247633
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An Individualized Approach for Somatic Variant Discovery.
    Li M; He T; Cao C; Long Q
    Methods Mol Biol; 2020; 2120():11-36. PubMed ID: 32124309
    [TBL] [Abstract][Full Text] [Related]  

  • 3. One Size Doesn't Fit All - RefEditor: Building Personalized Diploid Reference Genome to Improve Read Mapping and Genotype Calling in Next Generation Sequencing Studies.
    Yuan S; Johnston HR; Zhang G; Li Y; Hu YJ; Qin ZS
    PLoS Comput Biol; 2015 Aug; 11(8):e1004448. PubMed ID: 26267278
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Detection of oncogenic and clinically actionable mutations in cancer genomes critically depends on variant calling tools.
    Garcia-Prieto CA; Martínez-Jiménez F; Valencia A; Porta-Pardo E
    Bioinformatics; 2022 Jun; 38(12):3181-3191. PubMed ID: 35512388
    [TBL] [Abstract][Full Text] [Related]  

  • 5. VarSim: a high-fidelity simulation and validation framework for high-throughput genome sequencing with cancer applications.
    Mu JC; Mohiyuddin M; Li J; Bani Asadi N; Gerstein MB; Abyzov A; Wong WH; Lam HY
    Bioinformatics; 2015 May; 31(9):1469-71. PubMed ID: 25524895
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Personalized genome assembly for accurate cancer somatic mutation discovery using tumor-normal paired reference samples.
    Xiao C; Chen Z; Chen W; Padilla C; Colgan M; Wu W; Fang LT; Liu T; Yang Y; Schneider V; Wang C; Xiao W
    Genome Biol; 2022 Nov; 23(1):237. PubMed ID: 36352452
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Manta: rapid detection of structural variants and indels for germline and cancer sequencing applications.
    Chen X; Schulz-Trieglaff O; Shaw R; Barnes B; Schlesinger F; Källberg M; Cox AJ; Kruglyak S; Saunders CT
    Bioinformatics; 2016 Apr; 32(8):1220-2. PubMed ID: 26647377
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bivartect: accurate and memory-saving breakpoint detection by direct read comparison.
    Shimmura K; Kato Y; Kawahara Y
    Bioinformatics; 2020 May; 36(9):2725-2730. PubMed ID: 31985791
    [TBL] [Abstract][Full Text] [Related]  

  • 9. CScape-somatic: distinguishing driver and passenger point mutations in the cancer genome.
    Rogers MF; Gaunt TR; Campbell C
    Bioinformatics; 2020 Jun; 36(12):3637-3644. PubMed ID: 32282885
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An investigation of causes of false positive single nucleotide polymorphisms using simulated reads from a small eukaryote genome.
    Ribeiro A; Golicz A; Hackett CA; Milne I; Stephen G; Marshall D; Flavell AJ; Bayer M
    BMC Bioinformatics; 2015 Nov; 16():382. PubMed ID: 26558718
    [TBL] [Abstract][Full Text] [Related]  

  • 11. lordFAST: sensitive and Fast Alignment Search Tool for LOng noisy Read sequencing Data.
    Haghshenas E; Sahinalp SC; Hach F
    Bioinformatics; 2019 Jan; 35(1):20-27. PubMed ID: 30561550
    [TBL] [Abstract][Full Text] [Related]  

  • 12. SV-Bay: structural variant detection in cancer genomes using a Bayesian approach with correction for GC-content and read mappability.
    Iakovishina D; Janoueix-Lerosey I; Barillot E; Regnier M; Boeva V
    Bioinformatics; 2016 Apr; 32(7):984-92. PubMed ID: 26740523
    [TBL] [Abstract][Full Text] [Related]  

  • 13. SiNVICT: ultra-sensitive detection of single nucleotide variants and indels in circulating tumour DNA.
    Kockan C; Hach F; Sarrafi I; Bell RH; McConeghy B; Beja K; Haegert A; Wyatt AW; Volik SV; Chi KN; Collins CC; Sahinalp SC
    Bioinformatics; 2017 Jan; 33(1):26-34. PubMed ID: 27531099
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Whisper: read sorting allows robust mapping of DNA sequencing data.
    Deorowicz S; Debudaj-Grabysz A; Gudyś A; Grabowski S
    Bioinformatics; 2019 Jun; 35(12):2043-2050. PubMed ID: 30407485
    [TBL] [Abstract][Full Text] [Related]  

  • 15. ADFinder: accurate detection of programmed DNA elimination using NGS high-throughput sequencing data.
    Zheng W; Chen J; Doak TG; Song W; Yan Y
    Bioinformatics; 2020 Jun; 36(12):3632-3636. PubMed ID: 32246828
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Practicability of detecting somatic point mutation from RNA high throughput sequencing data.
    Sheng Q; Zhao S; Li CI; Shyr Y; Guo Y
    Genomics; 2016 May; 107(5):163-9. PubMed ID: 27046520
    [TBL] [Abstract][Full Text] [Related]  

  • 17. SV2: accurate structural variation genotyping and de novo mutation detection from whole genomes.
    Antaki D; Brandler WM; Sebat J
    Bioinformatics; 2018 May; 34(10):1774-1777. PubMed ID: 29300834
    [TBL] [Abstract][Full Text] [Related]  

  • 18. CROSSMAPPER: estimating cross-mapping rates and optimizing experimental design in multi-species sequencing studies.
    Hovhannisyan H; Hafez A; Llorens C; Gabaldón T
    Bioinformatics; 2020 Feb; 36(3):925-927. PubMed ID: 31392323
    [TBL] [Abstract][Full Text] [Related]  

  • 19. neoepiscope improves neoepitope prediction with multivariant phasing.
    Wood MA; Nguyen A; Struck AJ; Ellrott K; Nellore A; Thompson RF
    Bioinformatics; 2020 Feb; 36(3):713-720. PubMed ID: 31424527
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Strelka2: fast and accurate calling of germline and somatic variants.
    Kim S; Scheffler K; Halpern AL; Bekritsky MA; Noh E; Källberg M; Chen X; Kim Y; Beyter D; Krusche P; Saunders CT
    Nat Methods; 2018 Aug; 15(8):591-594. PubMed ID: 30013048
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.