These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 30247768)

  • 1. Direct inversion of the iterative subspace with contracted planewave basis functions.
    Stuart DW; Mosey NJ
    J Comput Chem; 2018 Sep; 39(23):1890-1901. PubMed ID: 30247768
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pseudodiagonalization-based wavefunction optimization with contracted planewave basis functions.
    Stuart DW; Mosey NJ
    J Comput Chem; 2020 Jan; 41(3):184-193. PubMed ID: 31646667
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Exact exchange with non-orthogonal generalized Wannier functions.
    Mountjoy J; Todd M; Mosey NJ
    J Chem Phys; 2017 Mar; 146(10):104108. PubMed ID: 28298125
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Projected Commutator DIIS Method for Accelerating Hybrid Functional Electronic Structure Calculations.
    Hu W; Lin L; Yang C
    J Chem Theory Comput; 2017 Nov; 13(11):5458-5467. PubMed ID: 28937762
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Q-Next: A Fast, Parallel, and Diagonalization-Free Alternative to Direct Inversion of the Iterative Subspace.
    Seidl C; Barca GMJ
    J Chem Theory Comput; 2022 Jul; 18(7):4164-4176. PubMed ID: 35748512
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A trust-region augmented Hessian implementation for restricted and unrestricted Hartree-Fock and Kohn-Sham methods.
    Helmich-Paris B
    J Chem Phys; 2021 Apr; 154(16):164104. PubMed ID: 33940809
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An Efficient Hartree-Fock Implementation Based on the Contraction of Integrals in the Primitive Basis.
    Held J; Hanrath M; Dolg M
    J Chem Theory Comput; 2018 Dec; 14(12):6197-6210. PubMed ID: 30365307
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Maximal orbital analysis of molecular wavefunctions.
    Dupuis M; Nallapu M
    J Comput Chem; 2019 Jan; 40(1):39-50. PubMed ID: 30226924
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An improved DIIS method using a versatile residual matrix to accelerate SCF starting from a crude guess.
    Hu L; Sarwono YP; Ding Y; He F; Zhang RQ
    J Comput Chem; 2024 Jul; ():. PubMed ID: 38979915
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tests of the efficiency of an augmented distorted planewave basis in electronic structure calculations.
    Bultmark F; Dewhurst K; Singh DJ; Nordström L
    J Phys Condens Matter; 2008 Jun; 20(23):235241. PubMed ID: 21694331
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Least-Squares Commutator in the Iterative Subspace Method for Accelerating Self-Consistent Field Convergence.
    Li H; Yaron DJ
    J Chem Theory Comput; 2016 Nov; 12(11):5322-5332. PubMed ID: 27709930
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Linear-scaling implementation of molecular response theory in self-consistent field electronic-structure theory.
    Coriani S; Høst S; Jansík B; Thøgersen L; Olsen J; Jørgensen P; Reine S; Pawłowski F; Helgaker T; Sałek P
    J Chem Phys; 2007 Apr; 126(15):154108. PubMed ID: 17461615
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Accelerating and stabilizing the convergence of vibrational self-consistent field calculations via the direct inversion of the iterative subspace (vDIIS) algorithm.
    Yang EL; Spencer RJ; Zhanserkeev AA; Talbot JJ; Steele RP
    J Chem Phys; 2023 Aug; 159(8):. PubMed ID: 37606324
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Linear-scaling implementation of molecular electronic self-consistent field theory.
    Sałek P; Høst S; Thøgersen L; Jørgensen P; Manninen P; Olsen J; Jansík B; Reine S; Pawłowski F; Tellgren E; Helgaker T; Coriani S
    J Chem Phys; 2007 Mar; 126(11):114110. PubMed ID: 17381199
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optimization of selected molecular orbitals in group basis sets.
    Ferenczy GG; Adams WH
    J Chem Phys; 2009 Apr; 130(13):134108. PubMed ID: 19355718
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Robust Periodic Hartree-Fock Exchange for Large-Scale Simulations Using Gaussian Basis Sets.
    Guidon M; Hutter J; VandeVondele J
    J Chem Theory Comput; 2009 Nov; 5(11):3010-21. PubMed ID: 26609981
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Basis set convergence studies of Hartree-Fock calculations of molecular properties within the resolution of the identity approximation.
    Artemyev A; Bibikov A; Zayets V; Bodrenko I
    J Chem Phys; 2005 Jul; 123(2):24103. PubMed ID: 16050737
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Efficient Computation of Hartree-Fock Exchange Using Recursive Subspace Bisection.
    Gygi F; Duchemin I
    J Chem Theory Comput; 2013 Jan; 9(1):582-7. PubMed ID: 26589056
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The augmented Roothaan-Hall method for optimizing Hartree-Fock and Kohn-Sham density matrices.
    Høst S; Olsen J; Jansík B; Thøgersen L; Jørgensen P; Helgaker T
    J Chem Phys; 2008 Sep; 129(12):124106. PubMed ID: 19045005
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A divide and conquer real space finite-element Hartree-Fock method.
    Alizadegan R; Hsia KJ; Martinez TJ
    J Chem Phys; 2010 Jan; 132(3):034101. PubMed ID: 20095722
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.