These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
155 related articles for article (PubMed ID: 30247811)
1. Data Curation can Improve the Prediction Accuracy of Metabolic Intrinsic Clearance. Esaki T; Watanabe R; Kawashima H; Ohashi R; Natsume-Kitatani Y; Nagao C; Mizuguchi K Mol Inform; 2019 Jan; 38(1-2):e1800086. PubMed ID: 30247811 [TBL] [Abstract][Full Text] [Related]
2. Direct Comparison of Total Clearance Prediction: Computational Machine Learning Model versus Bottom-Up Approach Using In Vitro Assay. Kosugi Y; Hosea N Mol Pharm; 2020 Jul; 17(7):2299-2309. PubMed ID: 32478525 [TBL] [Abstract][Full Text] [Related]
3. The Comparison of Machine Learning and Mechanistic In Vitro-In Vivo Extrapolation Models for the Prediction of Human Intrinsic Clearance. Keefer CE; Chang G; Di L; Woody NA; Tess DA; Osgood SM; Kapinos B; Racich J; Carlo AA; Balesano A; Ferguson N; Orozco C; Zueva L; Luo L Mol Pharm; 2023 Nov; 20(11):5616-5630. PubMed ID: 37812508 [TBL] [Abstract][Full Text] [Related]
4. Multispecies Machine Learning Predictions of In Vitro Intrinsic Clearance with Uncertainty Quantification Analyses. Rodríguez-Pérez R; Trunzer M; Schneider N; Faller B; Gerebtzoff G Mol Pharm; 2023 Jan; 20(1):383-394. PubMed ID: 36437712 [TBL] [Abstract][Full Text] [Related]
6. A Machine Learning Framework to Improve Rat Clearance Predictions and Inform Physiologically Based Pharmacokinetic Modeling. Andrews-Morger A; Reutlinger M; Parrott N; Olivares-Morales A Mol Pharm; 2023 Oct; 20(10):5052-5065. PubMed ID: 37713584 [TBL] [Abstract][Full Text] [Related]
7. Evaluation of the Disconnect between Hepatocyte and Microsome Intrinsic Clearance and In Vitro In Vivo Extrapolation Performance. Williamson B; Harlfinger S; McGinnity DF Drug Metab Dispos; 2020 Nov; 48(11):1137-1146. PubMed ID: 32847864 [TBL] [Abstract][Full Text] [Related]
8. Evaluation of ADMET Predictor in Early Discovery Drug Metabolism and Pharmacokinetics Project Work. Sohlenius-Sternbeck AK; Terelius Y Drug Metab Dispos; 2022 Feb; 50(2):95-104. PubMed ID: 34750195 [TBL] [Abstract][Full Text] [Related]
9. Use of Segregated Hepatocyte Scaling Factors and Cross-Species Relationships to Resolve Clearance Dependence in the Prediction of Human Hepatic Clearance. Hallifax D; Houston JB Drug Metab Dispos; 2019 Mar; 47(3):320-327. PubMed ID: 30610004 [TBL] [Abstract][Full Text] [Related]
10. An automated curation procedure for addressing chemical errors and inconsistencies in public datasets used in QSAR modelling. Mansouri K; Grulke CM; Richard AM; Judson RS; Williams AJ SAR QSAR Environ Res; 2016 Nov; 27(11):939-965. PubMed ID: 27885862 [TBL] [Abstract][Full Text] [Related]
11. Critically Assessing the Predictive Power of QSAR Models for Human Liver Microsomal Stability. Liu R; Schyman P; Wallqvist A J Chem Inf Model; 2015 Aug; 55(8):1566-75. PubMed ID: 26170251 [TBL] [Abstract][Full Text] [Related]
12. In Silico Prediction of Human and Rat Liver Microsomal Stability via Machine Learning Methods. Li L; Lu Z; Liu G; Tang Y; Li W Chem Res Toxicol; 2022 Sep; 35(9):1614-1624. PubMed ID: 36053050 [TBL] [Abstract][Full Text] [Related]
13. In silico prediction of chemical-induced hematotoxicity with machine learning and deep learning methods. Hua Y; Shi Y; Cui X; Li X Mol Divers; 2021 Aug; 25(3):1585-1596. PubMed ID: 34196933 [TBL] [Abstract][Full Text] [Related]
14. A probabilistic method to report predictions from a human liver microsomes stability QSAR model: a practical tool for drug discovery. Aliagas I; Gobbi A; Heffron T; Lee ML; Ortwine DF; Zak M; Khojasteh SC J Comput Aided Mol Des; 2015 Apr; 29(4):327-38. PubMed ID: 25708388 [TBL] [Abstract][Full Text] [Related]
15. Retrospective assessment of rat liver microsomal stability at NCATS: data and QSAR models. Siramshetty VB; Shah P; Kerns E; Nguyen K; Yu KR; Kabir M; Williams J; Neyra J; Southall N; Nguyễn ÐT; Xu X Sci Rep; 2020 Nov; 10(1):20713. PubMed ID: 33244000 [TBL] [Abstract][Full Text] [Related]
16. Strategies to improve the prediction accuracy of hepatic intrinsic clearance of three antidiabetic drugs: Application of the extended clearance concept and consideration of the effect of albumin on CYP2C metabolism and OATP1B-mediated hepatic uptake. Fujino R; Hashizume K; Aoyama S; Maeda K; Ito K; Toshimoto K; Lee W; Ninomiya SI; Sugiyama Y Eur J Pharm Sci; 2018 Dec; 125():181-192. PubMed ID: 30287410 [TBL] [Abstract][Full Text] [Related]
17. Comparison of In Vitro to In Vivo Extrapolation Approaches for Predicting Transporter-Mediated Hepatic Uptake Clearance Using Suspended Rat Hepatocytes. Li N; Badrinarayanan A; Li X; Roberts J; Hayashi M; Virk M; Gupta A Drug Metab Dispos; 2020 Oct; 48(10):861-872. PubMed ID: 32759366 [TBL] [Abstract][Full Text] [Related]
18. Prediction of Fraction Unbound in Microsomal and Hepatocyte Incubations: A Comparison of Methods across Industry Datasets. Winiwarter S; Chang G; Desai P; Menzel K; Faller B; Arimoto R; Keefer C; Broccatell F Mol Pharm; 2019 Sep; 16(9):4077-4085. PubMed ID: 31348668 [TBL] [Abstract][Full Text] [Related]
19. Predicting Fraction Unbound in Human Plasma from Chemical Structure: Improved Accuracy in the Low Value Ranges. Watanabe R; Esaki T; Kawashima H; Natsume-Kitatani Y; Nagao C; Ohashi R; Mizuguchi K Mol Pharm; 2018 Nov; 15(11):5302-5311. PubMed ID: 30259749 [TBL] [Abstract][Full Text] [Related]
20. Towards a gold standard: regarding quality in public domain chemistry databases and approaches to improving the situation. Williams AJ; Ekins S; Tkachenko V Drug Discov Today; 2012 Jul; 17(13-14):685-701. PubMed ID: 22426180 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]