BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

235 related articles for article (PubMed ID: 30247868)

  • 21. In Vitro and Cellular Probes to Study PARP Enzyme Target Engagement.
    Wigle TJ; Blackwell DJ; Schenkel LB; Ren Y; Church WD; Desai HJ; Swinger KK; Santospago AG; Majer CR; Lu AZ; Niepel M; Perl NR; Vasbinder MM; Keilhack H; Kuntz KW
    Cell Chem Biol; 2020 Jul; 27(7):877-887.e14. PubMed ID: 32679093
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Detecting Protein ADP-Ribosylation Using a Clickable Aminooxy Probe.
    Morgan RK; Cohen MS
    Methods Mol Biol; 2017; 1608():71-77. PubMed ID: 28695504
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Identifying Target RNAs of PARPs.
    Bock FJ; Chang P
    Methods Mol Biol; 2018; 1813():327-341. PubMed ID: 30097879
    [TBL] [Abstract][Full Text] [Related]  

  • 24. MARTs and MARylation in the Cytosol: Biological Functions, Mechanisms of Action, and Therapeutic Potential.
    Challa S; Stokes MS; Kraus WL
    Cells; 2021 Feb; 10(2):. PubMed ID: 33546365
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The impact of PARPs and ADP-ribosylation on inflammation and host-pathogen interactions.
    Fehr AR; Singh SA; Kerr CM; Mukai S; Higashi H; Aikawa M
    Genes Dev; 2020 Mar; 34(5-6):341-359. PubMed ID: 32029454
    [TBL] [Abstract][Full Text] [Related]  

  • 26. ADP-ribosylation and intracellular traffic: an emerging role for PARP enzymes.
    Grimaldi G; Corda D
    Biochem Soc Trans; 2019 Feb; 47(1):357-370. PubMed ID: 30710058
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Design, synthesis and evaluation of potent and selective inhibitors of mono-(ADP-ribosyl)transferases PARP10 and PARP14.
    Holechek J; Lease R; Thorsell AG; Karlberg T; McCadden C; Grant R; Keen A; Callahan E; Schüler H; Ferraris D
    Bioorg Med Chem Lett; 2018 Jun; 28(11):2050-2054. PubMed ID: 29748053
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A Study into the ADP-Ribosylome of IFN-γ-Stimulated THP-1 Human Macrophage-like Cells Identifies ARTD8/PARP14 and ARTD9/PARP9 ADP-Ribosylation.
    Higashi H; Maejima T; Lee LH; Yamazaki Y; Hottiger MO; Singh SA; Aikawa M
    J Proteome Res; 2019 Apr; 18(4):1607-1622. PubMed ID: 30848916
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Assessment of Intracellular Auto-Modification Levels of ARTD10 Using Mono-ADP-Ribose-Specific Macrodomains 2 and 3 of Murine Artd8.
    Bütepage M; Krieg S; Eckei L; Li J; Rossetti G; Verheugd P; Lüscher B
    Methods Mol Biol; 2018; 1813():41-63. PubMed ID: 30097860
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The coronavirus macrodomain is required to prevent PARP-mediated inhibition of virus replication and enhancement of IFN expression.
    Grunewald ME; Chen Y; Kuny C; Maejima T; Lease R; Ferraris D; Aikawa M; Sullivan CS; Perlman S; Fehr AR
    PLoS Pathog; 2019 May; 15(5):e1007756. PubMed ID: 31095648
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Glycolytic rate and lymphomagenesis depend on PARP14, an ADP ribosyltransferase of the B aggressive lymphoma (BAL) family.
    Cho SH; Ahn AK; Bhargava P; Lee CH; Eischen CM; McGuinness O; Boothby M
    Proc Natl Acad Sci U S A; 2011 Sep; 108(38):15972-7. PubMed ID: 21911376
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Selective inhibition of PARP10 using a chemical genetics strategy.
    Morgan RK; Carter-O'Connell I; Cohen MS
    Bioorg Med Chem Lett; 2015 Nov; 25(21):4770-4773. PubMed ID: 26231158
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Identification of Poly(ADP-Ribose) Polymerase Macrodomain Inhibitors Using an AlphaScreen Protocol.
    Ekblad T; Verheugd P; Lindgren AE; Nyman T; Elofsson M; Schüler H
    SLAS Discov; 2018 Apr; 23(4):353-362. PubMed ID: 29316839
    [TBL] [Abstract][Full Text] [Related]  

  • 34. PARP14 inhibits microglial activation via LPAR5 to promote post-stroke functional recovery.
    Tang Y; Liu J; Wang Y; Yang L; Han B; Zhang Y; Bai Y; Shen L; Li M; Jiang T; Ye Q; Yu X; Huang R; Zhang Z; Xu Y; Yao H
    Autophagy; 2021 Oct; 17(10):2905-2922. PubMed ID: 33317392
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Forced Self-Modification Assays as a Strategy to Screen MonoPARP Enzymes.
    Wigle TJ; Church WD; Majer CR; Swinger KK; Aybar D; Schenkel LB; Vasbinder MM; Brendes A; Beck C; Prahm M; Wegener D; Chang P; Kuntz KW
    SLAS Discov; 2020 Mar; 25(3):241-252. PubMed ID: 31855104
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Generating Protein-Linked and Protein-Free Mono-, Oligo-, and Poly(ADP-Ribose) In Vitro.
    Lin KY; Huang D; Kraus WL
    Methods Mol Biol; 2018; 1813():91-108. PubMed ID: 30097863
    [TBL] [Abstract][Full Text] [Related]  

  • 37. PARP9 and PARP14 cross-regulate macrophage activation via STAT1 ADP-ribosylation.
    Iwata H; Goettsch C; Sharma A; Ricchiuto P; Goh WW; Halu A; Yamada I; Yoshida H; Hara T; Wei M; Inoue N; Fukuda D; Mojcher A; Mattson PC; Barabási AL; Boothby M; Aikawa E; Singh SA; Aikawa M
    Nat Commun; 2016 Oct; 7():12849. PubMed ID: 27796300
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Structural basis for lack of ADP-ribosyltransferase activity in poly(ADP-ribose) polymerase-13/zinc finger antiviral protein.
    Karlberg T; Klepsch M; Thorsell AG; Andersson CD; Linusson A; Schüler H
    J Biol Chem; 2015 Mar; 290(12):7336-44. PubMed ID: 25635049
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Research Progress on PARP14 as a Drug Target.
    Qin W; Wu HJ; Cao LQ; Li HJ; He CX; Zhao D; Xing L; Li PQ; Jin X; Cao HL
    Front Pharmacol; 2019; 10():172. PubMed ID: 30890936
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A Potent and Selective PARP11 Inhibitor Suggests Coupling between Cellular Localization and Catalytic Activity.
    Kirby IT; Kojic A; Arnold MR; Thorsell AG; Karlberg T; Vermehren-Schmaedick A; Sreenivasan R; Schultz C; Schüler H; Cohen MS
    Cell Chem Biol; 2018 Dec; 25(12):1547-1553.e12. PubMed ID: 30344052
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.