These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 30248025)

  • 1. Fast turnaround fabrication of silicon point-contact quantum-dot transistors using combined thermal scanning probe lithography and laser writing.
    Rawlings C; Ryu YK; Rüegg M; Lassaline N; Schwemmer C; Duerig U; Knoll AW; Durrani Z; Wang C; Liu D; Jones ME
    Nanotechnology; 2018 Dec; 29(50):505302. PubMed ID: 30248025
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Excited states and quantum confinement in room temperature few nanometre scale silicon single electron transistors.
    Durrani ZA; Jones ME; Wang C; Liu D; Griffiths J
    Nanotechnology; 2017 Mar; 28(12):125208. PubMed ID: 28151725
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrical characteristics of silicon nanowire transistors fabricated by scanning probe and electron beam lithographies.
    Ryu YK; Chiesa M; Garcia R
    Nanotechnology; 2013 Aug; 24(31):315205. PubMed ID: 23857981
    [TBL] [Abstract][Full Text] [Related]  

  • 4. CMOS platform for atomic-scale device fabrication.
    Škereň T; Pascher N; Garnier A; Reynaud P; Rolland E; Thuaire A; Widmer D; Jehl X; Fuhrer A
    Nanotechnology; 2018 Oct; 29(43):435302. PubMed ID: 30070975
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thermal scanning probe and laser lithography for patterning nanowire based quantum devices.
    Shani L; Chaaban J; Nilson A; Clerc E; Menning G; Riggert C; Lueb P; Rossi M; Badawy G; Bakkers EPAM; Pribiag VS
    Nanotechnology; 2024 Apr; 35(25):. PubMed ID: 38467064
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lithography and doping in strained Si towards atomically precise device fabrication.
    Lee WC; McKibbin SR; Thompson DL; Xue K; Scappucci G; Bishop N; Celler GK; Carroll MS; Simmons MY
    Nanotechnology; 2014 Apr; 25(14):145302. PubMed ID: 24633016
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Edge-Contact MoS
    Conde-Rubio A; Liu X; Boero G; Brugger J
    ACS Appl Mater Interfaces; 2022 Sep; 14(37):42328-42336. PubMed ID: 36070441
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Few electron limit of n-type metal oxide semiconductor single electron transistors.
    Prati E; De Michielis M; Belli M; Cocco S; Fanciulli M; Kotekar-Patil D; Ruoff M; Kern DP; Wharam DA; Verduijn J; Tettamanzi GC; Rogge S; Roche B; Wacquez R; Jehl X; Vinet M; Sanquer M
    Nanotechnology; 2012 Jun; 23(21):215204. PubMed ID: 22552118
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fabrication and characterization of Si quantum dots and SiO(2) tunnel barriers grown by a controlled oxidation process.
    Madnasri SB; Hashim U; Zahid Jamal ZA
    Nanotechnology; 2008 Feb; 19(7):075302. PubMed ID: 21817633
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reduction of charge impurities in a silicon metal-oxide-semiconductor quantum dot qubit device patterned with nano-imprint lithography.
    Penthorn NE; Schoenfield JS; Rooney JD; Jiang H
    Nanotechnology; 2019 Nov; 30(46):465302. PubMed ID: 31426049
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Wafer-scale fabrication of isolated luminescent silicon quantum dots using standard CMOS technology.
    Jingjian Z; Pevere F; Gatty HK; Linnros J; Sychugov I
    Nanotechnology; 2020 Dec; 31(50):505204. PubMed ID: 33021208
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Silicon quantum dot/crystalline silicon solar cells.
    Cho EC; Park S; Hao X; Song D; Conibeer G; Park SC; Green MA
    Nanotechnology; 2008 Jun; 19(24):245201. PubMed ID: 21825804
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Film-thickness-dependent conduction in ordered Si quantum dot arrays.
    Surana K; Lepage H; Lebrun JM; Doisneau B; Bellet D; Vandroux L; Le Carval G; Baudrit M; Thony P; Mur P
    Nanotechnology; 2012 Mar; 23(10):105401. PubMed ID: 22348886
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The use of etched registration markers to make four-terminal electrical contacts to STM-patterned nanostructures.
    Rueß FJ; Oberbeck L; Goh KE; Butcher MJ; Gauja E; Hamilton AR; Simmons MY
    Nanotechnology; 2005 Oct; 16(10):2446-9. PubMed ID: 20818033
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Advanced oxidation scanning probe lithography.
    Ryu YK; Garcia R
    Nanotechnology; 2017 Apr; 28(14):142003. PubMed ID: 28273046
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Scanned Single-Electron Probe inside a Silicon Electronic Device.
    Ng KSH; Voisin B; Johnson BC; McCallum JC; Salfi J; Rogge S
    ACS Nano; 2020 Aug; 14(8):9449-9455. PubMed ID: 32510926
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Towards parallel fabrication of single electron transistors using carbon nanotubes.
    Islam MR; Joung D; Khondaker SI
    Nanoscale; 2015 Jun; 7(21):9786-92. PubMed ID: 25962565
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Room temperature Coulomb blockade effects in Au nanocluster/pentacene single electron transistors.
    Zheng H; Asbahi M; Mukherjee S; Mathai CJ; Gangopadhyay K; Yang JK; Gangopadhyay S
    Nanotechnology; 2015 Sep; 26(35):355204. PubMed ID: 26267227
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Combining in-situ lithography with 3D printed solid immersion lenses for single quantum dot spectroscopy.
    Sartison M; Portalupi SL; Gissibl T; Jetter M; Giessen H; Michler P
    Sci Rep; 2017 Jan; 7():39916. PubMed ID: 28057941
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sub-10 Nanometer Feature Size in Silicon Using Thermal Scanning Probe Lithography.
    Ryu Cho YK; Rawlings CD; Wolf H; Spieser M; Bisig S; Reidt S; Sousa M; Khanal SR; Jacobs TDB; Knoll AW
    ACS Nano; 2017 Dec; 11(12):11890-11897. PubMed ID: 29083870
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.