These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

61 related articles for article (PubMed ID: 302481)

  • 1. Improvement of gait following functional electrical stimulation. I. Investigations on changes in voluntary strength and proprioceptive reflexes.
    Carnstam B; Larsson LE; Prevec TS
    Scand J Rehabil Med; 1977; 9(1):7-13. PubMed ID: 302481
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spinal reflexes in ankle flexor and extensor muscles after chronic central nervous system lesions and functional electrical stimulation.
    Thompson AK; Estabrooks KL; Chong S; Stein RB
    Neurorehabil Neural Repair; 2009 Feb; 23(2):133-42. PubMed ID: 19023139
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chronic electrical stimulation for the modification of spasticity in hemiplegic patients.
    Stefanovska A; Gros N; Vodovnik L; Rebersek S; Acimović-Janezic R
    Scand J Rehabil Med Suppl; 1988; 17():115-21. PubMed ID: 3261039
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role of peripheral afferents and spinal reflexes in normal and impaired human locomotion.
    Dietz V
    Rev Neurol (Paris); 1987; 143(4):241-54. PubMed ID: 3629074
    [TBL] [Abstract][Full Text] [Related]  

  • 5. FES and spasticity.
    Stefanovska A; Vodovnik L; Gros N; Rebersek S; Acimović-Janezic R
    IEEE Trans Biomed Eng; 1989 Jul; 36(7):738-45. PubMed ID: 2787282
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Functional electrical stimulation in control of motor output and movements.
    Gracanin F
    Electroencephalogr Clin Neurophysiol Suppl; 1978; (34):355-68. PubMed ID: 220005
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Short and long latency reflexes in human muscles following electrical and mechanical stimulation.
    Tarkka IM
    Acta Physiol Scand Suppl; 1986; 557():1-32. PubMed ID: 3469889
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrical stimulation and feedback training: effects on the voluntary control of paretic muscles.
    Teng EL; McNeal DR; Kralj A; Waters RL
    Arch Phys Med Rehabil; 1976 May; 57(5):228-33. PubMed ID: 1275673
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Decreased contribution from afferent feedback to the soleus muscle during walking in patients with spastic stroke.
    Mazzaro N; Nielsen JF; Grey MJ; Sinkjaer T
    J Stroke Cerebrovasc Dis; 2007; 16(4):135-44. PubMed ID: 17689409
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interest of peripheral anesthetic blocks as a diagnosis and prognosis tool in patients with spastic equinus foot: a clinical and electrophysiological study of the effects of block of nerve branches to the triceps surae muscle.
    Buffenoir K; Decq P; Lefaucheur JP
    Clin Neurophysiol; 2005 Jul; 116(7):1596-600. PubMed ID: 15905125
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Peroneal nerve stimulator in rehabilitation of hemiplegic patients.
    Takebe K; Kukulka C; Narayan MG; Milner M; Basmajian JV
    Arch Phys Med Rehabil; 1975 Jun; 56(6):237-9. PubMed ID: 1079717
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improved motor response due to chronic electrical stimulation of denervated tibialis anterior muscle in humans.
    Valencic V; Vodovnik L; Stefancic M; Jelnikar T
    Muscle Nerve; 1986 Sep; 9(7):612-7. PubMed ID: 3489892
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The development of a potential optimized stimulation intensity envelope for drop foot applications.
    O'Keeffe DT; Donnelly AE; Lyons GM
    IEEE Trans Neural Syst Rehabil Eng; 2003 Sep; 11(3):249-56. PubMed ID: 14518788
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Clinical experience of electronic peroneal stimulators in 50 hemiparetic patients.
    Merletti R; Andina A; Galante M; Furlan I
    Scand J Rehabil Med; 1979; 11(3):111-21. PubMed ID: 315098
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hyperactive stretch reflexes, co-contraction, and muscle weakness in children with cerebral palsy.
    Poon DM; Hui-Chan CW
    Dev Med Child Neurol; 2009 Feb; 51(2):128-35. PubMed ID: 19018843
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Functional electrical stimulation.
    Larsson LE
    Scand J Rehabil Med Suppl; 1994; 30():63-72. PubMed ID: 7886429
    [No Abstract]   [Full Text] [Related]  

  • 17. Relief of hemiparetic spasticity by TENS is associated with improvement in reflex and voluntary motor functions.
    Levin MF; Hui-Chan CW
    Electroencephalogr Clin Neurophysiol; 1992 Apr; 85(2):131-42. PubMed ID: 1373366
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reciprocal inhibition and corticospinal transmission in the arm and leg in patients with autosomal dominant pure spastic paraparesis (ADPSP).
    Crone C; Petersen NT; Nielsen JE; Hansen NL; Nielsen JB
    Brain; 2004 Dec; 127(Pt 12):2693-702. PubMed ID: 15509621
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Relationships between spasticity, strength, gait, and the GMFM-66 in persons with spastic diplegia cerebral palsy.
    Ross SA; Engsberg JR
    Arch Phys Med Rehabil; 2007 Sep; 88(9):1114-20. PubMed ID: 17826455
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stimulation parameter optimization for functional electrical stimulation assisted gait in human spinal cord injury using response surface methodology.
    Kim Y; Schmit BD; Youm Y
    Clin Biomech (Bristol, Avon); 2006 Jun; 21(5):485-94. PubMed ID: 16488061
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.