These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
113 related articles for article (PubMed ID: 30248409)
1. Probing the role of Arg97 in Heat shock protein 90 N-terminal domain from the parasite Leishmania braziliensis through site-directed mutagenesis on the human counterpart. Tassone G; Mangani S; Botta M; Pozzi C Biochim Biophys Acta Proteins Proteom; 2018 Nov; 1866(11):1190-1198. PubMed ID: 30248409 [TBL] [Abstract][Full Text] [Related]
2. Structural Characterization of Human Heat Shock Protein 90 N-Terminal Domain and Its Variants K112R and K112A in Complex with a Potent 1,2,3-Triazole-Based Inhibitor. Tassone G; Mazzorana M; Mangani S; Petricci E; Cini E; Giannini G; Pozzi C; Maramai S Int J Mol Sci; 2022 Aug; 23(16):. PubMed ID: 36012721 [TBL] [Abstract][Full Text] [Related]
3. Low sequence identity but high structural and functional conservation: The case of Hsp70/Hsp90 organizing protein (Hop/Sti1) of Leishmania braziliensis. Batista FAH; Seraphim TV; Santos CA; Gonzaga MR; Barbosa LRS; Ramos CHI; Borges JC Arch Biochem Biophys; 2016 Jun; 600():12-22. PubMed ID: 27103305 [TBL] [Abstract][Full Text] [Related]
5. Low resolution structural studies indicate that the activator of Hsp90 ATPase 1 (Aha1) of Leishmania braziliensis has an elongated shape which allows its interaction with both N- and M-domains of Hsp90. Seraphim TV; Alves MM; Silva IM; Gomes FE; Silva KP; Murta SM; Barbosa LR; Borges JC PLoS One; 2013; 8(6):e66822. PubMed ID: 23826147 [TBL] [Abstract][Full Text] [Related]
6. Identification of two p23 co-chaperone isoforms in Leishmania braziliensis exhibiting similar structures and Hsp90 interaction properties despite divergent stabilities. Batista FA; Almeida GS; Seraphim TV; Silva KP; Murta SM; Barbosa LR; Borges JC FEBS J; 2015 Jan; 282(2):388-406. PubMed ID: 25369258 [TBL] [Abstract][Full Text] [Related]
7. Insights on the structural dynamics of Leishmania braziliensis Hsp90 molecular chaperone by small angle X-ray scattering. Seraphim TV; Silva KP; Dores-Silva PR; Barbosa LR; Borges JC Int J Biol Macromol; 2017 Apr; 97():503-512. PubMed ID: 28104372 [TBL] [Abstract][Full Text] [Related]
8. Discovery of small molecule inhibitors of Batista FAH; Ramos SL; Tassone G; Leitão A; Montanari CA; Botta M; Mori M; Borges JC J Enzyme Inhib Med Chem; 2020 Dec; 35(1):639-649. PubMed ID: 32048531 [TBL] [Abstract][Full Text] [Related]
9. Structural and functional studies of the Leishmania braziliensis SGT co-chaperone indicate that it shares structural features with HIP and can interact with both Hsp90 and Hsp70 with similar affinities. Coto ALS; Seraphim TV; Batista FAH; Dores-Silva PR; Barranco ABF; Teixeira FR; Gava LM; Borges JC Int J Biol Macromol; 2018 Oct; 118(Pt A):693-706. PubMed ID: 29959008 [TBL] [Abstract][Full Text] [Related]
10. ATP binding and hydrolysis are essential to the function of the Hsp90 molecular chaperone in vivo. Panaretou B; Prodromou C; Roe SM; O'Brien R; Ladbury JE; Piper PW; Pearl LH EMBO J; 1998 Aug; 17(16):4829-36. PubMed ID: 9707442 [TBL] [Abstract][Full Text] [Related]
11. Leishmania braziliensis replication protein A subunit 1: molecular modelling, protein expression and analysis of its affinity for both DNA and RNA. Nocua PA; Ramirez CA; Barreto GE; González J; Requena JM; Puerta CJ Parasit Vectors; 2014 Dec; 7():573. PubMed ID: 25498946 [TBL] [Abstract][Full Text] [Related]
12. The conserved arginine 380 of Hsp90 is not a catalytic residue, but stabilizes the closed conformation required for ATP hydrolysis. Cunningham CN; Southworth DR; Krukenberg KA; Agard DA Protein Sci; 2012 Aug; 21(8):1162-71. PubMed ID: 22653663 [TBL] [Abstract][Full Text] [Related]
14. Structure insights into mechanisms of ATP hydrolysis and the activation of human heat-shock protein 90. Li J; Sun L; Xu C; Yu F; Zhou H; Zhao Y; Zhang J; Cai J; Mao C; Tang L; Xu Y; He J Acta Biochim Biophys Sin (Shanghai); 2012 Apr; 44(4):300-6. PubMed ID: 22318716 [TBL] [Abstract][Full Text] [Related]
15. Mutations in the Hsp90 N Domain Identify a Site that Controls Dimer Opening and Expand Human Hsp90α Function in Yeast. Reidy M; Masison DC J Mol Biol; 2020 Jul; 432(16):4673-4689. PubMed ID: 32565117 [TBL] [Abstract][Full Text] [Related]
17. The Hsp90 chaperone machinery: conformational dynamics and regulation by co-chaperones. Li J; Soroka J; Buchner J Biochim Biophys Acta; 2012 Mar; 1823(3):624-35. PubMed ID: 21951723 [TBL] [Abstract][Full Text] [Related]
18. Comparative analysis of the ATP-binding sites of Hsp90 by nucleotide affinity cleavage: a distinct nucleotide specificity of the C-terminal ATP-binding site. Soti C; Vermes A; Haystead TA; Csermely P Eur J Biochem; 2003 Jun; 270(11):2421-8. PubMed ID: 12755697 [TBL] [Abstract][Full Text] [Related]
19. A novel C-terminal homologue of Aha1 co-chaperone binds to heat shock protein 90 and stimulates its ATPase activity in Entamoeba histolytica. Singh M; Shah V; Tatu U J Mol Biol; 2014 Apr; 426(8):1786-98. PubMed ID: 24486610 [TBL] [Abstract][Full Text] [Related]
20. Functional characterization of heat-shock protein 90 from Oryza sativa and crystal structure of its N-terminal domain. Raman S; Suguna K Acta Crystallogr F Struct Biol Commun; 2015 Jun; 71(Pt 6):688-96. PubMed ID: 26057797 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]