These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 30248554)

  • 1. Phytoremediation of barium-affected flooded soils using single and intercropping cultivation of aquatic macrophytes.
    Carvalho CFM; Viana DG; Pires FR; Egreja Filho FB; Bonomo R; Martins LF; Cruz LBS; Nascimento MCP; Cargnelutti Filho A; Rocha Júnior PRD
    Chemosphere; 2019 Jan; 214():10-16. PubMed ID: 30248554
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of planting density of the macrophyte consortium of Typha domingensis and Eleocharis acutangula on phytoremediation of barium from a flooded contaminated soil.
    Viana DG; Pires FR; Ferreira AD; Egreja Filho FB; Carvalho CFM; Bonomo R; Martins LF
    Chemosphere; 2021 Jan; 262():127869. PubMed ID: 32771709
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Selection of plants for phytoremediation of barium-polluted flooded soils.
    Ribeiro PRCC; Viana DG; Pires FR; Egreja Filho FB; Bonomo R; Cargnelutti Filho A; Martins LF; Cruz LBS; Nascimento MCP
    Chemosphere; 2018 Sep; 206():522-530. PubMed ID: 29778077
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phytoremediation in flooded environments: Dynamics of barium absorption and translocation by Eleocharis acutangula.
    Ferreira AD; Viana DG; Egreja Filho FB; Pires FR; Bonomo R; Martins LF; Pinto Nascimento MC; Silva Cruz LB
    Chemosphere; 2019 Mar; 219():836-844. PubMed ID: 30572235
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In situ barium phytoremediation in flooded soil using Typha domingensis under different planting densities.
    Viana DG; Egreja Filho FB; Pires FR; Soares MB; Ferreira AD; Bonomo R; Martins LF
    Ecotoxicol Environ Saf; 2021 Mar; 210():111890. PubMed ID: 33440270
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cutting frequency effect on barium phytoextraction by macrophytes in flooded environment: A field trial.
    Viana DG; Pires FR; Egreja Filho FB; Bonomo R; Martins LF; Costa KA; Ferreira AD; Madalão JC; Rocha Junior PRD; Nascimento MCP; Cruz LBS; Dias OS
    J Hazard Mater; 2019 Jan; 362():124-131. PubMed ID: 30236932
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A field study on heavy metals phytoattenuation potential of monocropping and intercropping of maize and/or legumes in weakly alkaline soils.
    Zhu S; Ma X; Guo R; Ai S; Liu B; Zhang W; Zhang Y
    Int J Phytoremediation; 2016 Oct; 18(10):1014-21. PubMed ID: 27159531
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Remediation of Arsenic contaminated soil using malposed intercropping of Pteris vittata L. and maize.
    Ma J; Lei E; Lei M; Liu Y; Chen T
    Chemosphere; 2018 Mar; 194():737-744. PubMed ID: 29247933
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Can liming change root anatomy, biomass allocation and trace element distribution among plant parts of Salix × smithiana in trace element-polluted soils?
    Vondráčková S; Tlustoš P; Száková J
    Environ Sci Pollut Res Int; 2017 Aug; 24(23):19201-19210. PubMed ID: 28664494
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Legume-grass intercropping phytoremediation of phthalic acid esters in soil near an electronic waste recycling site: a field study.
    Ma TT; Teng Y; Luo YM; Christie P
    Int J Phytoremediation; 2013; 15(2):154-67. PubMed ID: 23487993
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phytoremediation of soil contaminated with cadmium, copper and polychlorinated biphenyls.
    Wu L; Li Z; Han C; Liu L; Teng Y; Sun X; Pan C; Huang Y; Luo Y; Christie P
    Int J Phytoremediation; 2012 Jul; 14(6):570-84. PubMed ID: 22908627
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Intercropping of young grapevines with native grasses for phytoremediation of Cu-contaminated soils.
    De Conti L; Ceretta CA; Melo GWB; Tiecher TL; Silva LOS; Garlet LP; Mimmo T; Cesco S; Brunetto G
    Chemosphere; 2019 Feb; 216():147-156. PubMed ID: 30366268
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bioaccessibility of barium from barite contaminated soils based on gastric phase in vitro data and plant uptake.
    Abbasi S; Lamb DT; Palanisami T; Kader M; Matanitobua V; Megharaj M; Naidu R
    Chemosphere; 2016 Feb; 144():1421-7. PubMed ID: 26495826
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bioavailability of barium to plants and invertebrates in soils contaminated by barite.
    Lamb DT; Matanitobua VP; Palanisami T; Megharaj M; Naidu R
    Environ Sci Technol; 2013 May; 47(9):4670-6. PubMed ID: 23484806
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of copper bioaccumulation and translocation in Jatropha curcas grown in a contaminated soil.
    Ahmadpour P; Soleimani M; Ahmadpour F; Abdu A
    Int J Phytoremediation; 2014; 16(5):454-68. PubMed ID: 24912228
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Natural attenuation of weathered oil using aquatic plants in a farm in Southeast Mexico.
    Rivera-Cruz Mdel C; Trujillo-Narcía A; Trujillo-Rivera EA; Arias-Trinidad A; Mendoza-López MR
    Int J Phytoremediation; 2016 Sep; 18(9):877-84. PubMed ID: 26939740
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Assisted phytoremediation of heavy metal contaminated soil from a mined site with Typha latifolia and Chrysopogon zizanioides.
    Anning AK; Akoto R
    Ecotoxicol Environ Saf; 2018 Feb; 148():97-104. PubMed ID: 29031880
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The uptake of Cs and Sr from soil to radish (Raphanus sativus L.)- potential for phytoextraction and remediation of contaminated soils.
    Wang D; Wen F; Xu C; Tang Y; Luo X
    J Environ Radioact; 2012 Aug; 110():78-83. PubMed ID: 22402224
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of mutual intercropping on the cadmium accumulation in accumulator plants Stellaria media, Malachium aquaticum, and Galium aparine.
    Lu Q; Li J; Chen F; Liao M; Lin L; Tang Y; Liang D; Xia H; Lai Y; Wang X; Chen C; Ren W
    Environ Monit Assess; 2017 Nov; 189(12):622. PubMed ID: 29124423
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A comparative study to evaluate natural attenuation, mycoaugmentation, phytoremediation, and microbial-assisted phytoremediation strategies for the bioremediation of an aged PAH-polluted soil.
    García-Sánchez M; Košnář Z; Mercl F; Aranda E; Tlustoš P
    Ecotoxicol Environ Saf; 2018 Jan; 147():165-174. PubMed ID: 28843188
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.